12/11/2017~12/15/2017

Fitting of Paula's log(IEI) histograms

- Overlayed fits of each slice of the same experiment on top of each other.
 - Using kernel distributions

1 2

log s

4

0-3

1

• Using Two-Gaussian distribution fits

• x10HC067_3nMAng

• x50pMAng

x300pMAng

Plotted stacked histograms of intra-burst means, inter-burst means, spacing parameters, thresholds, void parameters for each cell grouped by slice
 Intra-burst means

Inter-burst means 0

Inter-burst means of x50pMAng using Gaussian-ExpExponential fits

Inter-burst means of x300pMAng using Gaussian-ExpExponential fits

• Spacing parameters

Spacing parameters of x300pMAng using Gaussian-ExpExponential fits

Spacing parameters of x1uMang using Gaussian-ExpExponential fits

• Thresholds (minimum between peaks)

Threshold #2s of x300pMAng using Gaussian-ExpExponential fits

• Void parameters

Void parameter #2s of x50pMAng using Gaussian-ExpExponential fits

Void parameter #2s of x300pMAng using Gaussian-ExpExponential fits

Scatter plots of statistics taken from each cell grouped by slice
 Inter-burst mean vs. intra-burst mean (linear scale)

Intra-burst mean (s)

10,

Intra-burst mean (s)

• Void parameter vs. Threshold (linear scale)

• Void parameter vs. Threshold (log scale)

• Spacing parameter vs. Threshold (linear scale)

• Void parameter vs. spacing parameter

Plan for next week

- Dynamic Clamp Data Analysis:
 - Extract spike threshold & maximum slope time
 - Plot correlation diagrams both ways and perform regression analyses
- Single Neuron Fitting
 - Adapt code so that parallel MATLAB toolbox could be called without using a license
 - Fit 12 traces (1 trace per condition) for each cell on Rivanna, **20 initial conditions**
 - Fit all traces (5~15 traces per condition) for each cell on Rivanna, 20 initial conditions
- Network
 - Implement network simulations without HH currents by predicting burst onset time, spikes per burst & spike frequency based on maximum LTS slope time and value.
 - Plot autocorrelograms and compute oscillatory index, oscillation period.
- Oscillation experiments
 - Move Paula's rig?
 - Learn how to perform **oscillation experiments**.

11/29/2017~12/10/2017

Fitting of Paula's log(IEI) histograms

- Raw log(IEI) data
 - By Experiment

• By Slice

1 2 3 Log of Inter-event intervals (log s)

Raw logData for x50pMAng_data300_Cell4

- Determination of intra-burst vs. inter-burst means and threshold:
 - Method 1: Compute kernel distributions with a Gaussian kernel. Choose mode as first peak; choose 2nd peak that has the highest void parameter value when paired with the mode. Choose threshold as the minimum between the two peaks.
 - Note: an Epanechnikov kernel did not change the bar graphs significantly
 - The default bandwidth Matlab uses is "optimal for normal distributions." However, I cannot find how this was computed. Therefore, the newest version forces Gaussian kernels to have a bandwidth equal to % * standard deviation of the data.

Default bandwidth: "optimal for normal distributions"

 Method 2: Fit with 2 Gaussian distributions using the maximum likelihood estimate. Threshold #1 is the intersection of the two component distributions. Threshold #2 is the minimum between the two peaks in the combined distribution.

 Method 3: Fit with a Gaussian distribution + an Exp-Exponential distribution using the maximum likelihood estimate. Threshold #1 is the intersection of the two component distributions. Threshold #2 is the minimum between the two peaks in the combined distribution.

 For some slices, is there really a second peak? Note the difference in void parameter value computed from two different methods. In fact, there is only one cell recorded in this slice.

• The trend with increasing drug concentration:

Gaussian-Exp-Exponential Fit for x50pMAng_data293_Cell1

Did slice data31 really have a second peak? A look at the distributions for each 0 cell in the slice:

Spacing Parameter = 0.864 Void Parameter #1 = 0.577 Void Parameter #2 = 0.585

Gaussian-Exp-Exponential Fit for x3nMAng_data31_Cell1

٠

Solution of the second second

Statistics of fits and threshold determination • Intra-burst means vs. inter-burst means

• Intra-burst means

• Spacing parameters (Difference between intra-burst and inter-burst mean)

Threshold #1s (intersections)

Threshold #2s (minimums)

Void parameter #1s (intersections)

Void parameter #2s (minimums)

Plan for next week

- Paula's IEIs
 - Overlay fits of **each slice** of the **same experiment** on top of each other. Overlay fits of **each cell** of the **same slice** on top of each other
 - Plot histograms of interburst means, intra-burst means, spacing parameters, thresholds, void parameters for each cell colored by slice
 - Discuss with Paula
- Dynamic Clamp Data Analysis:
 - Extract spike threshold & maximum slope time
 - Plot correlation diagrams both ways and perform regression analyses
- Single Neuron Fitting
 - Figure out problem running **NEURON** on Rivanna (with ACRS staff)
 - Adapt code so that parallel MATLAB toolbox could be called without using a license
 - Fit 12 traces (1 trace per condition) for each cell on Rivanna, **20 initial conditions**
 - Fit all traces (5~15 traces per condition) for each cell on Rivanna, 20 initial conditions
- Network
 - Implement network simulations without HH currents by predicting burst onset time, spikes per burst & spike frequency based on maximum LTS slope time and value.
 - Plot autocorrelograms and compute oscillatory index, oscillation period.
- Oscillation experiments
 - **Move** Paula's rig?
 - Learn how to perform **oscillation experiments**.

10/16/2017~10/18/2017

Updates to minEASE

- Now creates **empty output files** if no events are detected, so that events are combined whenever all sweeps are passed at least once.
- Now allows the manual mode to be skipped
 - Usage: minEASE('miniTest_Peter.xlsx', 'SkipManual', true);
- Added a parameter to **exclude too short events** (minimum decay time)
 - Add a column to the input Excel file called "Minimum PSC 50% Decay Time (ms)"; if no such column is present, the default is 0.3 ms
 - Class 4 events are now called "Wrong decay" events

• An example of a class 4 event:

- Added parameters to allow a **directional event** to have a breakpoint below baseline only up to a certain percentage of the peak amplitude
 - Add a column to the input Excel file called "Baseline Window Size (ms)"; if no such column is present, the default is 5 ms
 - Add a column called "Maximum Below Baseline Percentage (%)"; if no such column is present, the default is 100 %
 - Direction Factor * (Baseline value Breakpoint value)/Peak Amplitude x 100% < Maximum Below Baseline Percentage

• An example of an event present at 100%:

Note that the number of events for class 1 is now 142 (not much changed)

- Events are now ranked internally to allow for different modes of incrementing/decrementing event numbers
 - By time (default)
 - By **amplitude**
 - By 10-90% rise time
 - By 50% decay time

- Fixed bug: Wrong prompt occurred when changing from class 8
 - Moved verify_classNoNew() into change_class() so that it is executed after computing next-event-dependent statistics in case an event is added

20171022

10/19/2017

Fitting of Paula's IEI histograms

- Separation of intra-burst and inter-burst ISIs in literature
 - <u>Chen et al., 2009</u> ("Detection of bursts in neuronal spike trains by the mean inter-spike interval method")

• Separation of intra-burst and inter-burst ISIs using a Gaussian-mixture model

Comparison of means using Gaussian-Exponential fits for pooled data

• Separate intra-burst and inter-burst ISIs using a two **Gaussians model** for **each slice**, then compute the average and standard deviations of the means obtained from the fits for each slice

• Separate intra-burst and inter-burst ISIs using a **Gaussian-Exponential mixture model** for **each slice**, then compute the average and standard deviations of the means obtained from the fits for each slice

Comparison of means using Gaussian-Exponential fits for each slice

Comparison of intra-burst means using Gaussian-Exponential fits for each slice

• Separate intra-burst and inter-burst ISIs using **two Gaussians** for **each cell**, then compute the average and standard deviations of the means obtained from the fits for each cell, ignoring those that don't fit

• Separate intra-burst and inter-burst ISIs using a **Gaussian-Exponential mixture model** for **each cell**, then compute the average and standard deviations of the means obtained from the fits for each cell, ignoring those that don't fit

10/18/2017~

Investigation of the Destexhe 1996 Model

- Network structure:
 - 2 RT neurons & 2 TC neurons
 - RT-RT inhibition present
 - RT-TC and TC-RT are both all-to-all

• Spindle oscillations

^B (Figure 7 of <u>Destexhe et al., 1996</u>)

• Delta oscillations

Bicuculline-induced paroxysmal oscillations

- Remove divergence of TC-RT connections:
 - TC1->RT1, TC2->RT2 (now with double the strength as before)
 - Spindle oscillations have longer duration

Delta oscillations are now localized

Plan for next week

- Single Neuron Model:
 - Make histograms of errors across cells (using output files from the respective output directories)
 - Format: error_histogram(expDate)
 - Summary I-V curve of **all ionic currents**
 - Start with default parameters for those to be fitted across trials, and best parameters for those that were fitted across cells, fit across trials using the "most representative trace" (Of all trials of the same condition, see if most have bursts or LTS or neither. If neither, choose one without LTS with minimum noise. If most have LTSs but not bursts, choose one with LTS but not bursts with minimum noise. If most have bursts, choose one with bursts with minimum noise)
 - Compare plots of the **geometry** before and after fitting
 - Compare I-V curves before and after fitting
 - Write out the voltage relationships between compartments. Is the **cable equation** used by NEURON? No. Are the diameters tapered? No.
 - Try ball-and-stick model with 2 nodes for the stick instead? Use theory to estimate build parameters (lengths and diameters) and fit only epas & gpas? If doesn't work, use 3/2 diameter rule?
 - What is the appropriate **post-stimulus start point** for passive fitting? Apply the procedure in <u>Major et al., 1994</u>?
 - Should we account for series resistance and capacitive transients?
 - Try writing out an **explicit objective function**
 - Investigate where shiftm, shifth, slopem, slopeh should be placed. Should we make T_1/2 and k parameters instead? (Perhaps no, because taum and minf should vary together, see Pinsky-Rinzel model.)
 - Make g's and p's linearly vary from soma->dend1->dend2?
 - Explore Ed's way of parallelizing Matlab without using a toolbox license.
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)
 - Cohen (Analyzing Neural Time Series Data)

10/12/2017~10/13/2017

Fitting of Paula's ISI histogram

- Separation of intra-burst and inter-burst ISIs in literature
 - <u>Cocatre & Zilgien, 1992</u> ("Identification of bursts in spike trains")
 - 1. Use sqrt(N) or 1.87*(N-1)^0.4 for the number of bins in the ISI histogram
 - 2. Smooth the histogram by a moving average filter of 3 bins
 - 3. Locate the first mode, then locate the **first local minimum** or the **first inflection point** right of the first mode as the upper limit of intra-burst ISIs.
 - <u>Chen et al., 2009</u> ("Detection of bursts in neuronal spike trains by the mean inter-spike interval method")
 - 1. Compute the **mean of all ISIs**
 - 2. Eliminate ISIs greater than the mean
 - 3. Compute a **new mean for the remaining ISIs** and make it the upper limit of intra-burst ISIs.
- Separation of intra-burst and inter-burst ISIs using a Gaussian-mixture model

- Separation of intra-burst and inter-burst ISIs using a Gaussian-Exponential mixture model
 - *Rationale:* If bursts occur randomly and follows a Poisson process, the inter-burst ISIs should approximate an exponential distribution. On the other hand, intra-burst ISIs are dependent upon the intrinsic oscillatory rhythm so should more approximate a Gaussian distribution. These can therefore

Gaussian-Exponential Fit

10/13/2017~

Updates to minEASE

- These **bugs** were fixed:
 - First or last event not updated when removed
- Keystroke for **removing events**: Use the **Delete** key.
 - This performs the same action as **clicking the Remove button**, which would look for the nearest event of the selected class after removing the event.
 - The difference is, events will continue to be incremented until an event that **has not been marked** is found.

Plan for next week

- Single Neuron Model:
 - Make histograms of errors across cells (using output files from the respective output directories)
 - Format: error_histogram(expDate)
 - Summary I-V curve of **all ionic currents**
 - Start with default parameters for those to be fitted across trials, and best parameters for those that were fitted across cells, fit across trials using the "most representative trace" (Of all trials of the same condition, see if most have bursts or LTS or neither. If neither, choose one without LTS with minimum noise. If most have LTSs but not bursts, choose one with LTS but not bursts with minimum noise. If most have bursts, choose one with bursts with minimum noise)
 - Compare plots of the **geometry** before and after fitting
 - Compare I-V curves before and after fitting
 - Write out the voltage relationships between compartments. Is the **cable equation** used by NEURON? No. Are the diameters tapered? No.
 - Try ball-and-stick model with 2 nodes for the stick instead? Use theory to estimate build parameters (lengths and diameters) and fit only epas & gpas? If doesn't work, use 3/2 diameter rule?
 - What is the appropriate **post-stimulus start point** for passive fitting? Apply the procedure in <u>Major et al., 1994</u>?
 - Should we account for series resistance and capacitive transients?
 - Try writing out an **explicit objective function**
 - Investigate where shiftm, shifth, slopem, slopeh should be placed. Should we
 make T_1/2 and k parameters instead? (Perhaps no, because taum and minf
 should vary together, see Pinsky-Rinzel model.)
 - Make g's and p's linearly vary from soma->dend1->dend2?
 - Explore Ed's way of **parallelizing Matlab without using a toolbox license**.
- minEASE:
 - Fix bug: Cannot add an event if it overlaps with removed events
 - Fix bug: Changing class 8 to class 1
 - Ability to preliminarily analyze a set of files without clicking through
 - Add parameter to exclude too short events (minimum decay time)
 - Add parameter to only begin an event from a point a set number of SDs above baseline
 - Rank quality of peaks
 - Tune auto-detect parameters. Deal with **EPSCs mixed in with IPSCs**
 - Implement online detection
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)
 - Cohen (*Analyzing Neural Time Series Data*)

8/13/2017~8/20/2017

Single Neuron Fitting (continued)

• singleneuronfitting11.m (continued)

F101310

All traces:

Steady-state I-V curves for dend1:

Steady-state I-V curves for dend2:

Steady-state I-V curves for soma, dend0:

elationships for 20170810T1813_F101310_aft_ elationships for 20170810T1813_F101310_aft_

1

Simplex run #68

I_{T,∞}

l h,∞

l Kir,∞

A,∞

0

I NaP,∞

G101310

H101310

- Wrote code for **fitting across cells**:
 - Picks a trace from all trials for each cell for each input GABAB IPSC waveform (each pharm x g incr condition pair), with priority given to a trace with bursts, then to a trace with LTSs
 - Best parameters for each cell are used for the NEURON parameters that were fitted across trials.
- **singleneuronfitting12.m**: Fitted across cells using the best parameters from **singleneuronfitting11**
 - The best-fit parameters did not change at all...

All traces for Experiment 20170812T1044_ACROSSCELLS_bef

All traces for Experiment 20170812T1044_ACROSSCELLS_aft

Simplex run #1

• **singleneuronfitting12.m**: Tried again with **12 initial conditions**

• The best-fit parameters still **did not change**, although they did change for the other 11 initial conditions

		10 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /			2101			
shiftmlh	ehlh	slopehIT	slopemIT	hifthIT	shiftmIT	Initial tot	Final tota	Iteration #
0	-28	1	1	1	1	10.9079	10.9079	1
22.5184	-24	2.70372	3.85764	-30	30	21.0342	14.3939	2
23.891	-31.9719	1.3489	0.236758	4.75192	6.49096	15.2728	14.5761	3
-25.0119	-24	5.71387	10	29.5255	- <mark>12.234</mark> 5	80.3407	14.9019	4
1.17606	-27.3981	10	7.93893	-30	30	99.6839	14.4978	5
30	-32	1.72402	10	-30	30	27.1863	14.5038	6
-24.0413	-32	10	0.3013	-30	-30	83.0137	15.1559	7
-5.57825	-24	10	10	-30	13.0706	71.2523	14.7474	8
30	-24	1.54045	10	28.7818	-30	22.2247	14.5694	9
-1.277	-29.9668	1.90753	10	-30	30	29.0781	14.4095	10
-0.10537	-27.9906	2.11613	5.68088	29.4215	24.6568	20.1286	14.3637	11
30	- <mark>31.74</mark> 32	1.01127	0.224145	18.4358	-22.1687	69.5339	13.9354	12
Error tol	ror <mark>c</mark> hange	0 Final er	shiftmlh	ehlh_0	slopehIT_	slopemIT_0	shifthIT_0	shiftmIT_0
0.01	0.0660672	0	2	-2		1	1	1

Error tole	Final error change	shiftmin_0	enin_0	slopen[1_0	slopem[1_0	shifthii_0	shiftmi1_0
0.01	0.0660672	0	-28	1	1	1	1
0.01	0.00581717	-10.1799	-28.6371	0.742412	1.25697	-28.4444	-3.84031
0.01	1.87E-05	23.7776	-24.8564	1.05113	0.381777	12.4889	3.04787
0.01	8.18E-05	-17.0346	-26.4182	2.68926	8.81797	2.83393	28.0218
0.01	0.00579174	6.70463	-28.0927	6.87419	0.259083	22.2439	-16.6804
0.01	0.00906033	5.70312	-31.1387	0.121169	4.38994	-10.0812	23.5716
0.01	1.08E-05	2.30975	-24.1761	2.79853	0.753041	16.7951	-25.4215
0.01	0.000210587	-29.3161	-30.1382	1.15269	5.47506	28.1124	22.4058
0.01	0.00572856	-16.8865	-30.8631	0.185208	0.980724	0.112476	-29.3776
0.01	0.00175137	-16.5122	-28.0119	3.14491	1.85053	-28.7549	16.2792
0.01	0.00225614	- <mark>0.87437</mark> 4	-28.6384	2.81753	0.844184	-28.8315	-19.1838
0.01	0.00935629	25.1248	-31.8834	1.1681	0.336225	14.403	-20.7502

Plan for next week

- Will be in Maryland Thursday, 8/24 to help my sister move in
- Will be in New York this weekend to meet high school friends and coming back next Monday
- Area paper:
 - Talk to Dr. <u>Greg Gerling</u>. Finalize committee members and defense date
 - Work on **Area Paper outline**
 - Start writing the **Background** section
 - Continue to edit PPT slides for qualifying exam
- Single Neuron Model:
 - Make histograms of errors across cells (using output files from the respective output directories)
 - Format: error_histogram(expDate)
 - **Transient** I-V curve for **Ih**
 - Summary I-V curve of **all ionic currents**
 - Make plots of the **geometry** before and after fitting
 - Start with default parameters for those to be fitted across trials, and best parameters for those that were fitted across cells, fit across trials using the "most representative trace" (Of all trials of the same condition, see if most have bursts or LTS or neither. If neither, choose one without LTS with minimum noise. If most have LTSs but not bursts, choose one with LTS but not bursts with minimum noise. If most have bursts, choose one with bursts with minimum noise)
 - Write out the voltage relationships between compartments. Is the **cable equation** used by NEURON? No. Are the diameters tapered? No.
 - Try ball-and-stick model with 2 nodes for the stick instead? Use theory to estimate build parameters (lengths and diameters) and fit only epas & gpas? If doesn't work, use 3/2 diameter rule?
 - What is the appropriate **post-stimulus start point** for passive fitting? Apply the procedure in <u>Major et al., 1994</u>?
 - Should we account for series resistance and capacitive transients?
 - Try writing out an **explicit objective function**
 - Investigate where shiftm, shifth, slopem, slopeh should be placed. Should we make T_1/2 and k parameters instead? (Perhaps no, because taum and minf should vary together, see Pinsky-Rinzel model.)
 - Make g's and p's linearly vary from soma->dend1->dend2?
 - Explore Ed's way of **parallelizing Matlab without using a toolbox license**.
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)

8/7/2017~8/8/2017

minEASE (updates)

- Event removal is implemented as changing to class 8 (deleted).
- Event addition is now implemented in two steps:
 - 1. Add an event of class 8 (deleted)
 - 2. Change the event from class 8 to class to add
- **Removed events (class 8)** now have **NaNs** for IEIs, ISIs and decay times. And computations of IEIs, ISIs for other events now **skips events of class 8** when looking for the next event.
- Now recomputes IEIs, ISIs and decay times, both for the event in question and for the **previous event**, after an event is added (changed from class 8) or removed (changed to class 8).

8/7/2017~8/13/2017

Single Neuron Fitting (continued)

- Activation/inactivation curves of IT
 - Destexhe old: shiftmIT = 2, shifthIT = 0, slopemIT = 1, slopehIT = 1

I-V curves for IT & Ih • Destexhe old: pcabarIT = .2e-3, shiftmIT = 2, shifthIT = 0, slopemIT = 1, slopehIT 0 = 1, ghbarlh = 2.2e-5, shiftmlh = 0 I-V relationship of IT I-V relationship of Ih $2 \Gamma^{\times 10^{-3}}$ -0.1 1.3 -0.2 Current (mA/cm²) Current (mA/cm²) 0.5 -0.5 -0.6 -0.3 -0.8 -120 100 -100 Membrane potential (mV) 0 -60 -40 -20 Membrane potential (mV) Destexhe 1998: pcabarIT = .2e-3, shiftmIT = 1, shifthIT = 1, slopemIT = 1, 0 slopehIT = 1, ghbarlh = 2.2e-5, shiftmlh = 0 I-V relationship of IT I-V relationship of Ih -0.1 -0.2 Current (mA/cm²) 0.5 -0.5 -0.6 -0.7 -0.8 -120 -120 -100 80 -60 -40 -20 Membrane potential (mV) -100 80 -60 -40 -20 Membrane potential (mV) Christine_soma: pcabarIT = 5e-6, shiftmIT = -13.8, shifthIT = -4.8, slopemIT = 0 1.4, slopehIT = 1, ghbarlh = 1.1e-5, shiftmlh = 11.4

- All I-V curves
 - Destexhe old: pcabarIT = .2e-3, shiftmIT = 2, shifthIT = 0, slopemIT = 1, slopehIT = 1, ghbarIh = 2.2e-5, shiftmIh = 0

- Created compare_and_plot_across_IC.m and compare_and_plot_across_IC2.m for compare across different initial sets of NEURON parameters
- Created compare_neuronparams.m for comparing sets of parameters that:
 - Determine which parameters were changed
 - Plot graphs according to what parameters were changed
 - Usage: compare_neuronparams(paramNames, paramValues, suffices)
- optimizer_4compgabab.m now plots activation/inactivation, I-V curves for initial and final sets of NEURON parameters after optimization
- Reran **singleneuronfitting10.m** for Destexhe default after the following changes:
 - ek: -97 -> **-100 mV**
 - shiftmIT: -2 -> 1 mV
 - shiftmlh: 0 -> 1 mV

Steady-state I-V curves for **soma**:

- singleneuronfitting11.m: Changed eh from -43 mV to -28 mV and bound it by -24~-32 mV. (Based on [Na+]out = 127.25 mM, [Na+]in = 4.5 mM, [K+]out = 2.5 mM, [K+]in = 113 mM & celsius = 33 degC, the GHK voltage equation yields -24 ~ -32 mV)
- Fitted all 36 cells on fishfish, using one arbitrary trace per input condition
 Before optimization (starting with the same default parameters):

All traces for Experiment 20170810T1813_D091710_bef

After optimization: 0

D091710

All traces:

Active fitting history:

E091710

B091810

120

140

100 200 300 400

100 200 300 400

100

20

40

60 80 Number of iterations

D091810

E091810

F091810

A092110

C092110

 80 100 120 Number of iterations

B092710

C092710

E092710

A092810

K092810

0

40 60

80 100 Number of iterations

120 140

160

180

100 200 300 400

23

300

400

A092910

C092910

D092910

E092910

E100110

Number of iterations

A100810

B100810

D100810

Number of iterations

A101210

C101210

D101210

0;

rror

ime

dme

20

adols 10

Number of iterations

M101210

0.15

0.1

0

80 100 120 Number of iterations 140 160 180 200

15 10

> 5 0 0

100 200 300 400

time

40

ad 20

100 200 300 400

B101310

Number of iterations

D101310

E101310

Plan for next week

- Area paper:
 - Send out emails to committee members about defense date
 - Work on **Area Paper outline**
 - Browse recent literature on GABA-B receptors & HCN channels
 - Prepare PPT slides for qualifying exam
- Single Neuron Model:
 - Try different initial conditions and fit **across cells** again
 - Make plots of the **geometry** before and after fitting
 - Start with default parameters for those to be fitted across trials, and best parameters for those that were fitted across cells, fit across trials using the "most representative trace" (Of all trials of the same condition, see if most have bursts or LTS or neither. If neither, choose one without LTS with minimum noise. If most have LTSs but not bursts, choose one with LTS but not bursts with minimum noise. If most have bursts, choose one with bursts with minimum noise)
 - Write out the voltage relationships between compartments. Is the **cable equation** used by NEURON? No. Are the diameters tapered? No.
 - Try ball-and-stick model with 2 nodes for the stick instead? Use theory to estimate build parameters and fit only epas & gpas?
 - Try writing out an **explicit objective function**
 - Investigate where shiftm, shifth, slopem, slopeh should be placed. Should we make T_1/2 and k parameters instead? (Perhaps no, because taum and minf should vary together, see Pinsky-Rinzel model.)
 - Make g's and p's linearly vary from soma->dend1->dend2?
 - Explore Ed's way of **parallelizing Matlab without using a toolbox license**.
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)

7/31/2017

minEASE (updates)

- Now skips to the next unchecked event when using keyboard to increment/decrement event number
- Now reads .mat files that contain a **data matrix**.
- Added **DataType** (**'abf'** or **'mat'**) as an optional parameter-value pair argument. If no data type is provided, the program first searches for **ABF files** in the data subdirectory, then searches for **MAT files** if abf files don't exist.
- Added **SiMs** (the sampling interval in ms) as an optional parameter-value pair argument. The default SiMs for mat files is **0.1 ms**. If ABF files are read, any user-defined SiMs is overridden by what is stored in the file.
- A function **abf2mat.m** under Adams_Functions is updated to save data matrices directly and to accept a directory as an argument (all abf files in the directory will be converted in this case).
- Added **sweepsToAnalyze** as an input parameter (a column in the input Excel file) so that the user can select the sweeps they want from an ABF file if there are multiple sweeps per file.
- Now makes a **subdirectory** in the output directory for each file if there are multiple sweeps per file

7/30/2017~8/6/2017

Details of our current TC neuron model

• IT.mod

- T-type calcium current responsible for low-threshold spikes (LTS)
- *History:* Modified from ITGHK.mod of the <u>Destexhe et al 1998a model</u>, based on the model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992.
- *Current-voltage relationship:* Described by **Goldman-Hodgkin-Katz equations**.
- Gating: Uses 2 activation gates and 1 inactivation gate (m²h). Voltage dependence and kinetics of activation/inactivation at 23 °C from voltage-clamp data (whole cell patch clamp) of Huguenard & Prince, J. Neurosci. 12: 3804-3817, 1992. Updated to reflect values in Destexhe et al, 1998.
- The activation and inactivation functions can be empirically corrected to account for the contamination of inactivation, to compensate for screening charge, etc. The correction terms are denoted **shiftm** and **shifth** and cause depolarizing (rightward) shifts.
- The steepness of the activation and inactivation functions can be varied with the parameters **slopem** and **slopeh**, respectively.
- $\circ \quad \text{Suffix: "IT"}$
- Input/Output: reads cai [mM] & cao [mM], writes ica [mA/cm²]

Name	Description	Default value	Range/ global
qm	Q ₁₀ for activation [1]	3.6*	global
qh	Q ₁₀ for inactivation [1]	2.5*	global

• Parameters - GLOBAL variables whose values are fixed:

 *Q₁₀s are from Coulter et al., J Physiol 414: 587, 1989. However, Destexhe et al 1998 used **2.5** in the simulations.

• Parameters - RANGE variables whose values are specified in hoc:

Name	Description	Default value	Range/ global
pcabar	default maximum Ca++ permeability [cm/s]	0.2e-3	range
shiftm	depolarizing shift of activation curve [mV]	1*	range
shifth	depolarizing shift of inactivation curve [mV]	1*	range
slopem	scaling factor for slope of activation curve [mV]	1	range
slopeh	scaling factor for slope of inactivation curve [mV]	1	range

 *Default shifts corresponds to 2 mM ext Ca++ (compensates for screening charge) and was used by Destexhe et al 1998.

Name	Description	Dependent Parameters	Range/ global	
v	membrane potential [mV]	N/A	range	
celsius	temperature [°C]	N/A	global	
cai	calcium concentration inside the cell [mM]	N/A	range	
сао	calcium concentration outside the cell [mM]	N/A	range	
	 Assigned variables - GLOBAL variables that are assigned in the INITIAL block. 			

0	Assigned variables	Variables that are assign	ned outside the mod file:
-	/ looigillou vallabioo	variablee that are acong	

(Assigned variables - GLOBAL variables that are assigned in the INITIAL block: 			
Name	Description	Dependent Parameters	Range/ global	
phim	temperature adjustment to taum [1]	qm, celsius	global	
phih	temperature adjustment to tauh [1]	qh, celsius	global	

Assigned variables - RANGE variables that are assigned in the INITIAL & DERIVATIVE blocks:

Name	Description	Dependent Parameters	Range/ global
minf	steady state value of activation gating variable [1]	v, shiftm, slopem	range
hinf	steady state value of inactivation gating variable [1]	v, shifth, slopeh	range
taum	time constant for activation [ms]	v, shiftm, slopem, phim	range
tauh	time constant for inactivation [ms]	v, shifth, slopeh, phih	range

Assigned variables - RANGE variables that are assigned in the BREAKPOINT block:

Name	Description	Dependent Parameters	Range/ global
ica	calcium current generated [mA/cm ²]	pcabar, m, h, v, cai, cao	range

	• States:		
Name	Description	Dependent Parameters	Initialization
m	activation gating variable [1]	minf, taum	minf
h	inactivation gating variable [1]	hinf, tauh	hinf

• Equations:

First, update gating variables:

$$\begin{aligned} \frac{dm}{dt} &= \frac{m_{\infty} - m}{\tau_m} \\ \frac{dh}{dt} &= \frac{h_{\infty} - h}{\tau_h} \\ m_{\infty} &= \frac{1}{1 + e^{(V + 57 - shift_m)/(-6.2slope_m)}} \end{aligned}$$

(Here, $V_{1/2}$ is assumed to be **-57 mV**, but can be modified by $shift_m$, the slope **-6.2** is modified by $slope_m$)

$$h_{\infty} = \frac{1}{1 + e^{(V+81-shift_h)/(4.0slope_h)}}$$

(Here, $V_{1/2}$ is assumed to be **-81 mV**, but can be modified by *shift_h*, the slope **4.0** is modified by *slope_h*)

20170807

For
$$V - shift_h > = -80 \text{ mV},$$

 $\tau_h = \frac{1}{\Phi_h slope_h} (28 + e^{(V+22-shift_h)/(-10.5)})$
 $\Phi_m = Q_{10,m}^{(T-23)/10}$

In all simulations, $\mathbf{Q}_{_{10,\mathrm{m}}}$ = 3.6. Since T = 33°C, 1/Phi_m = 0.277. $\Phi_h=Q_{10,h}^{(T-23)/10}$

In all simulations, $Q_{10,h} = 2.5$. Since T = 33°C, 1/Phi_h = 0.400. Next, update currents:

$$I_{\rm T} = I_{\rm Ca} = \bar{P}_{\rm Ca} m^2 h G(V, [{\rm Ca}]_o, [{\rm Ca}]_i)$$
$$G(V, [{\rm Ca}]_o, [{\rm Ca}]_i) = \frac{Z^2 F^2 V}{RT} \frac{[{\rm Ca}]_i - [{\rm Ca}]_o e^{-ZFV/RT}}{1 - e^{-ZFV/RT}}$$

where Z = 2, T is in [K], V is in [V]. This is based on the **Goldman–Hodgkin–Katz flux equation**

5

• Procedures and functions:

Name & Arguments	Description	Called by
evaluate_fct(v(mV))	Update minf, hinf, taum, tauh based on current voltage	INITIAL, DERIVATIVE
ghk (v(mV), ci(mM), co(mM)) (.001 coul/cm3)	Computes the Goldman-Hodgkin-Katz flux based on current voltage, concentration inside the cell, concentration outside the cell	BREAKPOINT, nongat()
efun(z)	z/(exp(z) - 1) with Taylor approximation when z < 1e-4, z is a floating point number (uses NMODL intrinsic function fabs)	ghk()
nongat(v,cai,cao)	Non-gated version of the calcium current nongat = pcabar * ghk(v, cai, cao)	NONE

ghk has the structure:

(.001)*2*FARADAY*(ci*efun(-z) - co*efun(z))

where

efun(z) = z/(exp(z) - 1)

and

z = (1e-3 [V/mV])*2*FARADAY*v/(R*(celsius+273.15))

For |z| < 1e-4, the 1st order Taylor approximation

 $z/(exp(z) - 1) \sim 1 - z/2$ is used

• Ih.mod

• Hyperpolarization-activated nonspecific cationic current

- *History:* Modified from Ih.mod of Amarillo et al., J Neurophysiol, 2014. Based on the model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992, with updated kinetics from Santoro et al., 2000 & Amarillo et al., 2014.
- *Current-voltage relationship:* Described by **Ohm's Law**.
- Gating: Uses 1 activation gate (m). Voltage dependence and kinetics of activation at 34 °C from Amarillo et al., 2014. Note: Huguenard & McCormick originally had V_{1/2} = -75 mV and k = 5.5 mV. Santoro et al. had V_{1/2} = -82 mV
- *Permeability ratio:* K⁺:Na⁺ is about **3:1~4:1,** Santoro et al., 1999.
- Approximate reversal potential: Based on [Na+]out = 127.25 mM, [Na+]in = 4.5 mM, [K+]out = 2.5 mM, [K+]in = 113 mM & celsius = 33 degC, the GHK voltage equation yields -24 ~ -32 mV. Santoro et al., 1999 had -35 mV. Amarillo et al., 2014 used -43 mV.
- Identity: HCN channels (Hyperpolarization-activated cyclic-nucleotide dependent cation-nonspecific channels). mHCN2 & mHCN4 found in thalamocortical relay neurons. See Santoro et al., 2000.
- Suffix: "Ih"

• Input/Output: writes ih [mA/cm²] as a nonspecific current

• Parameters - GLOBAL variables whose values are fixed:

 Parameters - GLOBAL variables whose values are fixed: 				
Name	Description		Default value	Range/ global
qm	Q ₁₀ for activation [1]		4.0*	global
	 *Q₁₀ is from Santoro & Tibbs, 1999, based Purkinje fibers), 4.5 (rat CA1 pyramidal neu pyramidal neurons) Parameters - RANGE variables whose values are 	urons),	5 (guinea p	• •
Name	Description		Default value	Range/ global
ghbar	default maximum conductance of Ih [S/cm ²]		2.2e-5	range
eh	reversal potential of Ih [mV]		-43	range
shiftm	depolarizing shift of activation curve [mV]		0	range
• Assigned variables - Variables that are assigned outside the mod file:				
Name	Description		ndent neters	Range/ global
v	membrane potential [mV]	N/A		range
celsius	temperature [°C]	N/A		global
	 Assigned variables - GLOBAL variables that are a 	ssigned	t in the INIT	IAL block:
Name	Description	Dependent Parameters		Range/ global
phim	temperature adjustment to taum [1]	qm, celsius		global
	 Assigned variables - RANGE variables that are as DERIVATIVE blocks: 	signed	in the INITI	AL &
Name	Description		ndent neters	Range/ global
minf	steady state value of activation gating variable [1]	v, shi	ftm	range
taum	time constant for activation [ms]	v, shi	ftm, phim	range

	block:			
Name	Description	Dependent Range/ Parameters global		
ih	H current generated [mA/cm2]	ghbar, m, v, eh range		
• States:				
Name	Description	Dependent Initialization Parameters		
m	activation gating variable [1]	minf, taum minf		

 Assigned variables - RANGE variables that are assigned in the BREAKPOINT block:

• Equations:

First, update gating variables:

$$\frac{dm}{dt} = \frac{m_{\infty} - m}{\tau_m}$$
$$m_{\infty} = \frac{1}{1 + e^{(V + 82 - shift_m)/5.5}}$$

(Here, $V_{1/2}$ is assumed to be **-82 mV**, but can be modified by *shift_m*)

• Next, update currents: $I_{\rm h} = \bar{g}_{\rm h} m (V - E_{\rm h})$

• Procedures and functions:

Name & Arguments	Description	Called by
settables(v(mV))	Update minf, taum based on current voltage	INITIAL, DERIVATIVE

• IA.mod

• Fast transient potassium current

- *History:* Modified from IA.mod of Amarillo et al., J Neurophysiol, 2014, based on the model of Huguenard & McCormick, J Neurophysiol 68: 1373-1383, 1992.
- Current-voltage relationship: Described by Ohm's Law.
- Gating: Uses 4 activation gates and 1 inactivation gate (m⁴h). There are two types of activation gates, each paired with a type of inactivation gates. The ratio of contribution is 3:2.
- Voltage dependence and kinetics of activation/inactivation at 23 °C from voltage-clamp data (whole cell patch clamp) of Huguenard & Prince, J. Neurosci. 12: 3804-3817, 1992.
- Suffix: "IA"
- Input/Output: reads **ek** [mV], writes **ik** [mA/cm²]

 Parameters - GLOBAL variables whose values are fixed: 					
Name	Description		Default value	Range/ global	
q10	Q ₁₀ for both activation and inactivation [1]		2.8*	global	
 *from Huguenard et al, 1991. Parameters - RANGE variables whose values are specified in hoc: 					
Name	Description Default value		Range/ global		
gkbar	default maximum conductance of IA [S/cm ²]		5.5e-3	range	
L	 Assigned variables - Variables that are assigned o 	utside	the mod file	:	
Name	Description	Dependent Parameters		Range/ global	
v	membrane potential [mV]	N/A		range	
celsius	temperature [°C]	N/A		global	
ek	reversal potential of potassium [mV]	N/A		range	
 Assigned variables - GLOBAL variables that are assigned in the INITIAL block: 					
Name	Description	Dependent Parameters		Range/ global	
phi	temperature adjustment to taum & tauh [1]	q10, celsius		global	
 Assigned variables - RANGE variables that are assigned in the INITIAL & DERIVATIVE blocks: 					
Name	Description	Dependent Parameters		Range/ global	
m1inf	steady state value of activation gating variable #1 [1]	v		range	
m2inf	steady state value of activation gating variable #2 [1]	v		range	
hinf	steady state value of inactivation gating variables [1]	v		range	
taum	time constant for activation gating variables [ms]	v, phi		range	
tauh1	time constant for inactivation gating variable #1 [ms]	v, phi		range	

time constant for inactivation gating variable #2 [ms]	v, phi	range				
 Assigned variables - RANGE variables that are assigned in the BREAKPOINT block: 						
Description	Dependent Parameters	Range/ global				
potassium current generated [mA/cm ²]	gkbar, m1, m2, h1, h2, ek, v	range				
• States:						
Description	Dependent Parameters	Initialization				
activation gating variable #1 [1]	m1inf, taum	m1inf				
activation gating variable #2 [1]	m2inf, taum	m2inf				
inactivation gating variable #1 [1]	hinf, tauh1	hinf				
inactivation gating variable #2 [1]	hinf, tauh2	hinf				
	[ms] Assigned variables - RANGE variables that are assiblock: Description potassium current generated [mA/cm²] States: Description activation gating variable #1 [1] activation gating variable #2 [1] inactivation gating variable #1 [1]	[ms]DescriptionDependent Parameterspotassium current generated [mA/cm²]gkbar, m1, m2, h1, h2, ek, vStates:Dependent ParametersdescriptionDependent Parametersactivation gating variable #1 [1]m1inf, tauminactivation gating variable #2 [1]m2inf, tauminactivation gating variable #1 [1]hinf, tauh1				

• Equations:

• First, update gating variables:

$$\begin{aligned} \frac{dm_1}{dt} &= \frac{m_{1,\infty} - m_1}{\tau_m} \\ \frac{dm_2}{dt} &= \frac{m_{2,\infty} - m_2}{\tau_m} \\ \frac{dh_1}{dt} &= \frac{h_\infty - h_1}{\tau_{h_1}} \\ \frac{dh_2}{dt} &= \frac{h_\infty - h_2}{\tau_{h_2}} \\ m_{1,\infty} &= \frac{1}{1 + e^{(V+60)/(-8.5)}} \\ m_{2,\infty} &= \frac{1}{1 + e^{(V+36)/(-20)}} \\ h_\infty &= \frac{1}{1 + e^{(V+78)/6.0}} \end{aligned}$$

• Procedures and functions:

Name & Arguments	Description	Called by
settables(v(mV))	Update m1inf, m2inf, hinf, taum, tauh1 , tauh2 based on current voltage	INITIAL, DERIVATIVE

• IKir.mod

• Potassium strong inward rectifier current

- *History:* Modified from IKir.mod of Amarillo et al., J Neurophysiol, 2014.
- Current-voltage relationship: Described by Ohm's Law..
- *Gating:* Uses an instantaneous activation gate. Voltage dependence from Amarillo et al., J Neurophysiol, 2014.
- Suffix: "IKir"
- Input/Output: reads **ek** [mV], writes **ik** [mA/cm²]
- Parameters RANGE variables whose values are specified in hoc:

Na	ame	Description	Default value	Range/ global
gk	kbar	default maximum conductance of IKir [S/cm ²]	2.0e-5	range

Name	Description	Dependent Parameters	Range/ global
v	membrane potential [mV]	N/A	range
ek	reversal potential of potassium [mV]	N/A	range

Assigned variables - Variables that are assigned outside the mod file:

 Assigned variables - RANGE variables that are assigned in the BREAKPOINT block:

Name	Description	Dependent Parameters	Range/ global
minf	steady state value of activation gating variable [1]	v	range
ik	potassium current generated [mA/cm ²]	gkbar, minf, ek, v	range

• Equations:

Update gating variable:

$$m_{\infty} = \frac{1}{1 + e^{(V+97.9)/9.7}}$$

Steady state values for activation/inactivation of IKir $\frac{1}{2}$

- INaP.mod
 - Persistent sodium current
 - *History:* Modified from INaP.mod of Amarillo et al., J Neurophysiol, 2014. Based on the model by Wu et al, 2005 on mesencephalic trigeminal sensory neurons.
 - *Current-voltage relationship:* Described by **Ohm's Law**.
 - Gating: Uses 1 activation gate and 1 inactivation gate (mh). The activation is instantaneous whereas the inactivation is slow and time-dependent. Voltage dependence and kinetics of activation/inactivation at 23 °C from voltage-clamp data (whole cell patch clamp) of Wu et al, 2005.
 - Suffix: "INaP"
 - Input/Output: reads ena [mV], writes ina [mA/cm²]
 - Parameters GLOBAL variables whose values are fixed:

Name	Description	Default value	Range/ global
qh	Q ₁₀ for inactivation [1]	3*	global

*Q₁₀ is assumed by Amarillo et al

			ed in hoc:		
Name	Description I			Range/ global	
gnabar	default maximum conductance of INaP [S/cm ²]		5.5e-6	range	
 Assigned variables - Variables that are assigned outside the mod file: 					
Name	Description	Deper Paran	ndent neters	Range/ global	
v	membrane potential [mV]	N/A		range	
celsius	temperature [°C]	N/A		global	
ena	reversal potential of sodium [mV]	N/A		range	
	 Assigned variables - GLOBAL variables that are a 	assigned	l in the IN	IITIAL block:	
Name	Description	Depe Paran	ndent neters	Range/ global	
phih	temperature adjustment to tauh [1]	qh, ce	elsius	global	
 Assigned variables - RANGE variables that are assigned in the INITIAL & DERIVATIVE blocks: 					
Name	Description	Dana			
	Description		ndent neters	Range/ global	
minf	steady state value of activation gating variable [1]			•	
minf hinf		Paran		global	
	steady state value of activation gating variable [1]	Paran v	neters	global range	
hinf	steady state value of activation gating variable [1] steady state value of activation gating variable [1]	Paran v v v, phil	neters	global range range range	
hinf	steady state value of activation gating variable [1] steady state value of activation gating variable [1] time constant for inactivation [ms] o Assigned variables - RANGE variables that are as	Paran v v v, phil ssigned	neters h in the BR	global range range range	
hinf tauh	steady state value of activation gating variable [1] steady state value of activation gating variable [1] time constant for inactivation [ms] • Assigned variables - RANGE variables that are as block:	Paran v v v, phil ssigned Deper Paran	neters n in the BR ndent neters ar, minf, h	global range range range EAKPOINT Range/ global	
hinf tauh Name	steady state value of activation gating variable [1] steady state value of activation gating variable [1] time constant for inactivation [ms] • Assigned variables - RANGE variables that are as block: Description	Paran v v v, phil ssigned Deper Paran gnaba	neters n in the BR ndent neters ar, minf, h	global range range range EAKPOINT Range/ global	
hinf tauh Name	steady state value of activation gating variable [1] steady state value of activation gating variable [1] time constant for inactivation [ms] • Assigned variables - RANGE variables that are as block: Description sodium current generated [mA/cm2]	Paran v v v, phil ssigned Deper Paran gnaba v, ena	neters h in the BR ndent neters ar, minf, h	global range range range EAKPOINT Range/ global	

 Parameters - RANGE variables whose values are specified in hoc:

• Equations:

First, update gating variables:

$$m_{\infty} = \frac{1}{1 + e^{(V+57.9)/(-6.4)}}$$
$$\frac{dh}{dt} = \frac{h_{\infty} - h}{\tau_h}$$
$$h_{\infty} = \frac{1}{1 + e^{(V+58.7)/14.2}}$$

In all simulations, $Q_{10,m} = 3$. Since T = 33°C, 1/Phi_m = 0.333.

• Next, update currents: $I_{\text{NaP}} = \bar{g}_{\text{Na}} m_{\infty} h(V - E_{\text{Na}})$

• Procedures and functions:

Name & Arguments	Description	Called by
setvalues(v(mV))	Update minf, hinf, tauh based on current voltage	INITIAL, DERIVATIVE

• cadecay.mod

- Fast mechanism for submembranal Ca++ concentration (cai)
- Suffix: "**cad**" (same as calcium pump)
- Input/Output: reads ica ([mA/cm²]) & cai, writes cai
- Parameters RANGE variables whose values are specified in hoc:

Name	Description	Default value	Range/ global
depth	Depth of the shell just beneath the membrane [µm]	0.1	range
cainf	Equilibrium concentration of calcium [mM]	2.4e-4	range

taur	Time constant of calcium extrusion, must be fast) [ms	t) [ms] 24*			range	
 *Sohal & Huguenard 2003 (@ 34 degC). Note: Destexhe used 5 ms, Amarillo used 1 ms. Assigned variables - Variables that are assigned outside the mod file: 						
Name	Description	Dependent Range/ Parameters global			-	
ica	calcium current [mA/cm2]	N/A			range	
 Assigned variables - RANGE variables that are assigned in the DERIVATIVE block: 						
Name	Description	Dependent Range/ Parameters global			U	
drive_ch annel	calcium flux due to ica [mM/ms]	ica, depth			range	
 States & initialization: 						
Name	Description			Initia	alization	
cai	submembranal Ca++ concentration [mM]	submembranal Ca++ concentration [mM]			cainf	

- Equations:
 - Differential equation:

$$\frac{d[\operatorname{Ca}]_i}{dt} = -\frac{I_{\operatorname{Ca}}}{2Fd} + \frac{([\operatorname{Ca}]_{\infty} - [\operatorname{Ca}]_i)}{\tau_r}$$

 $dt = 2Fd = \tau_r$ (using implicit integration) where *F* is Faraday's constant, *d* is the depth of the shell just beneath the membrane.

• gabab_m3ha.mod

• Simple GABA-B receptor

- Point Process: "gabab"
- Input/Output: writes a nonspecific current i
- Parameters GLOBAL variables whose values are fixed:

Name	Description	Default value	Range/ global
р	power of rising phase [1]	8	global
q10	Q10 for all phases [1]	2.1*	global

 *Q10 is from Otis et al, 1993. However, not used here since Christine did everything at 33 degC

Name	Description	Default value	Range/ global			
Erev	Reversal potential [mV]	-115	range			
amp	maximum amplitude of gabab conductance [uS]	15.92*	range			
Trise	rise time constant [ms]	52*	range			
TfallFast	fast decay time constant [ms]	140.02*	range			
TfallSlow	slow decay time constant [ms]	1073*	range			
w	weight of fast decay [1]	0.952*	range			
Ninputs	number of input streams [1] 1					

• Parameters - RANGE variables whose values are specified in hoc:

• *these are changed across pharmacological conditions

• Assigned variables - Variables that are assigned outside the mod file:

Name	Description	Dependent Parameters	Range/ global			
v	postsynaptic membrane potential [mV]	N/A	range			
celsius	temperature [°C]	N/A				
• Assigned variables - GLOBAL variables that are assigned in the INITIAL block:						

Name		Description	Dependent Parameters	Range/ global					
phi		temperature adjustment for rates [1]	q10, celsius	global					

Assigned variables - RANGE variables that are assigned in the BREAKPOINT block:

Name	Description	Dependent Parameters	Range/ global				
g			Ron, RoffFast, RoffSlow, w, p amp	•			
i	current generated [nA]	g, v, Erev	range				
• States:							
Name	Description	Dependent Parameters In		Initialization			

Ron	slow decay variable [1]	Trise, phi, weight, Ninputs	0
RoffSlow	fast decay variable [1]	TfallFast, phi, weight, Ninputs	0
RoffFast	rise variable [1]	TfallSlow, phi, weight, Ninputs	0

These have a maximum value of 1 for an isolated IPSC

 Obsolete - Internal variables in the NET_RECEIVE block that are called by reference:

Name	Description	Dependent Parameters	Initialization
Rlast	amount of activation right after the last synaptic event [1]	Rlast, Tlast, p, amp, Trise, TfallFast, TfallSlow, w, weight, Ninputs	0
Tlast	time point of the last synaptic event [ms]	t	0

• Equations:

• Upon receiving a synaptic event, update synaptic variables:

$$R_{\text{off,fast}} = R_{\text{off,fast}} + \frac{weight}{N_{\text{inputs}}}$$
$$R_{\text{off,slow}} = R_{\text{off,slow}} + \frac{weight}{N_{\text{inputs}}}$$
$$R_{\text{on}} = R_{\text{on}} + \frac{weight}{N_{\text{inputs}}}$$

• At each time step, update synaptic variables:

$$\frac{dR_{\rm off,fast}}{dt} = \frac{-R_{\rm off,fast}}{T_{\rm off,fast}/\Phi}$$
$$\frac{dR_{\rm off,slow}}{dt} = \frac{-R_{\rm off,slow}}{T_{\rm off,slow}/\Phi}$$
$$\frac{dR_{\rm on}}{dt} = \frac{-R_{\rm on}}{T_{\rm on}/\Phi}$$

Finally, update currents:

$$\begin{split} g_{\rm GABA_B} &= A(1-R_{\rm on})^p (wR_{\rm off,fast} + (1-w)R_{\rm off,slow}) \\ \text{where A is the amplitude (not the maximum though)} \\ I_{\rm GABA_B} &= g_{\rm GABA_B} (V-E_{\rm rev}) \end{split}$$

	Control	GAT 1 Block	GAT 3 Block	Dual Block		
amp [nS]	32	48	17.76	12.64		
Trise [ms]	52	52	38.63	39.88		
TfallFast [ms]	90.1	90.1	273.4	65.8		
TfallSlow [ms]	1073.2	1073.2	1022	2600		
w [1]	0.952	0.952	0.775	0.629		

• Parameters for GABA-B conductance curves @ 200 % g incr:

• GABA-B conductance curves @ 200 % g incr:

• GABA-B conductance curves @ 100 %, 200 % & 400% g incr:

Plan for next week

- minEASE:
 - Recompute IEIs, ISIs, decay times, etc. after adding/deleting/changing events
- Single Neuron Model:
 - Rerun singleneuronfitting10.m for Dexteshe default after changing ek, shifmIT & shiftmIh
 - Finish plotting the activation/inactivation curves
 - Plot all **I-V curves** together
 - Write out the voltage relationships between compartments. Is the **cable equation** used by NEURON? Are the diameters tapered?
 - Investigate where shiftm, shifth, slopem, slopeh should be placed. Should we
 make T_1/2 and k parameters instead? (Perhaps no, because taum and minf
 should vary together, see Pinsky-Rinzel model.)
 - Change **eh** to be bounded by -24~-32 mV?
 - Try ball-and-stick model with 2 nodes for the stick instead? Use theory to estimate build parameters and fit only epas & gpas?
 - Try writing out an **explicit objective function**
 - Write code for **fitting across cells** (pick a **"stereotyped trace"** from all trials, Change parameters for each cell)
- Area paper:
 - Start writing background information for area paper
 - Decide on committee members, defense date and send emails
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)

7/24/2017~7/26/2017

minEASE (updates)

- Fixed bug for 10-90% rise times
- Combine event information from all sweeps that have been analyzed together and change the units of all time/duration values from samples to absolute time (ms).

Peak Time	Breakpoin	Peak Valu	Peak Amp	0-100% Ri	10-90% Ri	Peak to Pe	Peak to Br	50% Deca	Full Decay	Event Clas	Whether
25.9	31.1298	21.69	9.43987	0.6	0.4	6.3	5.8	1.2	2.7	6	1
32.2	37.7115	28.3664	9.3451	0.5	0.4	8.7	8.4	0.3	8.3	6	1
40.9	40.3224	30.9307	9.39167	0.3	0.2	43.5	42.2	<mark>3.</mark> 8	NaN	6	1
84.4	37.3403	9.90454	27.4357	1.3	0.7	31.1	30.2	0.9	5.4	1	1
115.5	35.0054	25.521	9.48442	0.9	0.8	49.4	48.7	0.9	1.7	6	1
164.9	37.2528	28.5309	8.72189	0.7	0.7	10.5	9.5	0.3	0.9	6	1
175.4	37.3217	28.4304	8.89136	1	0.6	6.9	6.6	0.3	0.6	6	1
182.3	33.0117	24.0007	9.01108	0.3	0.2	41.9	41.6	0.2	1	6	1
224.2	38.8625	29.9925	8.86994	0.3	0.3	11.9	10.6	NaN	NaN	6	1
<mark>236.1</mark>	31.5741	17.3244	14.2498	1.3	1.1	3.1	2.6	0.5	1.7	1	1
239.2	33.1785	24.1288	9.04967	0.5	0.5	31	30.4	0.6	0.7	6	1
270.2	29.3464	3.83406	25.5123	0.6	0.4	37.4	36.5	0.4	1	1	1
307.6	30.0423	11.0243	19.0179	0.9	0.8	42.3	41.7	0.5	2.4	1	1
349.9	31.1918	17.443	13.7489	0.6	0.6	79.2	78	0.4	0.7	1	1
429.1	33.7981	24.7354	9.06274	1.2	1.2	5.9	5.1	0.6	0.7	6	1
435	38.1053	26.7356	11.3696	0.8	0.8	20.2	18.2	2	NaN	2	1

- Averaged Types II & III PSCs too, computed averaged PSCs 4 ways and allowed averaging *after* the event info from sweeps are combined:
 - **'None**' mode (keep all PSCs and including leading and trailing traces):

• **'Padboth**' mode (pad **NaNs** to PSCs that are too short on both sides):

• 'Padright' mode (pad NaNs to PSCs that are too short on both sides):

• **'Omit**' mode (omit PSCs that are too short):

- Allowed loading of previously saved event information
- Fixed the bug that checked events weren't initialized as filled circles

20170731

7/26/2017~7/30/2017

Single Neuron Fitting (continued)

• **singleneuronfitting6_manual**: Took one trace out of each pharm x g incr pair for better visualization. From optimized parameters in **singleneuronfitting5**

All traces for Experiment 20170727T0922_A092110

All traces for Experiment 20170727T0922_B091810

All traces for Experiment 20170727T0922_B092710

All traces for Experiment 20170727T0922_C092110

All traces for Experiment 20170727T0922_C092710

All traces for Experiment 20170727T0922_D091710

All traces for Experiment 20170727T0922_D091810

All traces for Experiment 20170727T0922_E091710

All traces for Experiment 20170727T0922_E091810

All traces for Experiment 20170727T0922_F091810

singleneuronfitting7_manual: After reorganizing mod files and changing ek to -97 mV:
 Before:

-70 -50 -60 -80 -80 4000 6000 8000 10000 4000 6000 8000 10000 -90 4000 6000 8000 10000 -60 -50 -50 -80 -100 4000 6000 8000 10000 4000 6000 8000 10000 -100 4000 6000 8000 10000 -50 -50 -50 -100 -100 -100 4000 6000 8000 10000 4000 6000 8000 10000 4000 6000 8000 10000 -70 -60 -50 -80 -80 4000 6000 8000 10000 4000 6000 8000 10000 -90 4000 6000 8000 10000

All traces for Experiment 20170727T0922_E091710

• After:

All traces for Experiment 20170728T1317_E091710

• **singleneuronfitting8**: Re-optimized with just these 12 traces. Started with default parameters from the Destexhe model (**Destexhe default**). Fitted **conductances of all channels**. Normalized **sweep error** by **holding potential**:

All traces for Experiment 20170728T1839_E091710_bef

All traces for Experiment 20170728T1839_E091710_aft

• Normalized sweep error by maximum noise:

All traces for Experiment 20170728T1925_E091710_aft

• Normalized all errors to initial error. Compared across initializing to Destexhe default, Christine's best values and best values from singleneuronfitting5.

All traces for Experiment 20170728T2233_E091710_aft

• Initialized to Christine's best values

All traces for Experiment 20170729T0016_E091710_bef

All traces for Experiment 20170729T0016_E091710_aft

Initialized to best values from singleneuronfitting5

All traces for Experiment 20170729T0050_E091710_bef

All traces for Experiment 20170729T0050_E091710_aft

0		neters compa				
	Initialize to Destexhe - before	Initialize to Destexhe - after	Initialize to Christine - before	Initialize to Christine - after	Initialize to singleneu ronfitting5 - before	Initialize to singleneu ronfitting5 - after
Total error	1	0.4822	1	0.7665	1	0.8293
Sweep error	1	0.6341	1	1.341	1	1.118
LTS amp error	1	0.7521	1	0.5806	1	0.8741
LTS time error	1	0.4572	1	0.7618	1	0.898
LTS slope error	1	0.1613	1	0.6697	1	0.5716
Average LTS error	1	0.4569	1	0.6707	1	0.7813
diamSom a	38.42	38.96	38.42	38.79	36.24	37.97
LDend1	12.49	58.45	12.49	65.9	120	106.3
diamDend 1ToSoma	0.2676	0.1	0.2676	0.1136	0.1	0.1
LDend2	84.67	113.2	84.67	104.4	117.2	102.6
diamDend 2To1	0.8268	1	0.8268	1	0.7088	0.8071
distDendP ercent	50	50	68.6	68.6	50	50
cm	0.88	0.88	0.789	0.789	0.88	0.88
Ra	173	173	173	173	173	173
corrD	7.954	7.954	7.954	7.954	7.954	7.954
gpas	1.00E-05	3.04E-05	8.21E-06	2.82E-05	3.26E-05	2.93E-05
epas	-80	-72.24	-80.4	-77.86	-70.19	-90

• Errors/Parameters comparison:

pcabarITS oma	0.0002	4.29E-05	5.00E-06	1.40E-05	2.82E-07	7.32E-08
pcabarITD	0.0002	2.42E-05	5.00E-06	2.03E-06	2.82E-07	1.40E-07
end0						
pcabarITD end1	0.0002	5.65E-05	8.91E-06	1.52E-05	1.84E-06	6.17E-07
pcabarITD end2	0.0002	0.01	3.98E-06	9.70E-06	5.66E-05	4.98E-05
shiftmIT	2	2	-13.8	-13.8	-13.8	-13.8
shifthIT	0	0	-4.8	-4.8	-4.8	-4.8
slopemIT	1	1	1.4	1.4	1.4	1.4
slopehIT	1	1	1	1	1	1
ghbarSom a	2.20E-05	0.01	1.10E-05	2.60E-06	3.02E-07	9.04E-07
ghbarDen d0	2.20E-05	0.00041	1.10E-05	1.40E-06	3.02E-07	4.72E-06
ghbarDen d1	2.20E-05	0.000156	1.10E-05	2.47E-06	2.81E-06	1.05E-06
ghbarDen d2	2.20E-05	7.76E-05	1.10E-05	1.00E-08	1.02E-06	1.53E-06
eh	-43	-43	-43	-43	-43	-43
shiftmlh	0	0	11.4	11.4	11.4	11.4
gkbarlKir Soma	2.00E-05	3.51E-08	2.00E-05	2.43E-05	2.00E-05	6.13E-05
gkbarlKir Dend0	2.00E-05	2.68E-05	2.00E-05	1.17E-05	2.00E-05	3.11E-05
gkbarlKir Dend1	2.00E-05	8.03E-06	2.00E-05	9.10E-05	2.00E-05	4.50E-05
gkbarlKir Dend2	2.00E-05	7.67E-05	2.00E-05	1.33E-05	2.00E-05	7.63E-06
gkbarlASo ma	0.0055	0.01	0.0055	0.01	0.0055	0.000674

gkbarlADe nd0	0.0055	0.01	0.0055	0.003254	0.0055	0.01
gkbarlADe nd1	0.0055	0.01	0.0055	0.01	0.0055	0.001752
gkbarlADe nd2	0.0055	0.01	0.0055	0.01	0.0055	0.005429
gnabarlNa PSoma	5.50E-06	1.80E-06	5.50E-06	2.65E-06	5.50E-06	7.37E-06
gnabarlNa PDend0	5.50E-06	1.65E-06	5.50E-06	6.11E-06	5.50E-06	1.00E-08
gnabarlNa PDend1	5.50E-06	8.62E-05	5.50E-06	5.72E-06	5.50E-06	4.94E-05
gnabarlNa PDend2	5.50E-06	3.53E-05	5.50E-06	2.53E-05	5.50E-06	9.13E-07

- Problem:
 - If error is relative, there is no way to **compare across optimization runs**
 - If error is absolute, must find a way to make the errors dimensionless so that different types of errors could be weighted and combined meaningfully.
- Solution: normalizing by some sort of **uncertainty of measurement**
 - This also has the benefit of *weighting noisier traces less*.

 singleneuronfitting9: Made errors absolute (do not normalize to initial error). Normalized LTS errors to its own uncertainty (LTS amplitude is normalized by maximum noise, LTS time is normalized by peakwidth, LTS slope is normalized by slope*(2*maximum noise/peakprom + 2*ioffset/peakwidth). Changed LTS existence error from 1 to 10. Changed error ratios to Sweep:LTSamp:LTStime:LTSslope = 1:1:1:1

All traces for Experiment 20170729T0304_E091710_bef

All traces for Experiment 20170729T0304_E091710_aft

• Initialized to Christine's best values

All traces for Experiment 20170729T1838_E091710_bef

All traces for Experiment 20170729T1838_E091710_aft

Initialized to best values from singleneuronfitting5

All traces for Experiment 20170729T1910_E091710_bef

All traces for Experiment 20170729T1910_E091710_aft

0										
	Initialize to Destexhe - before	Initialize to Destexhe - after	Initialize to Christine - before	Initialize to Christine - after	Initialize to singleneu ronfitting5 - before	Initialize to singleneu ronfitting5 - after				
Total error	23.18	6.984	7.624	5.736	7.288	5.128				
Sweep error	14.46	2.509	1.758	1.791	2.133	2.324				
LTS amp error	27.06	8.971	6.221	8.389	9.988	3.747				
LTS time error	33.39	8.179	5.394	5.986	9.471	8.962				
LTS slope error	17.82	8.276	17.12	6.777	7.559	5.479				
Average LTS error	26.09	8.476	9.58	7.051	9.006	6.063				
diamSom a	38.42	38.96	38.42	38.79	36.24	37.97				
LDend1	12.49	58.45	12.49	65.9	120	106.3				
diamDend 1ToSoma	0.2676	0.1	0.2676	0.1136	0.1	0.1				
LDend2	84.67	113.2	84.67	104.4	117.2	102.6				
diamDend 2To1	0.8268	1	0.8268	1	0.7088	0.8071				
distDendP ercent	50	50	68.6	68.6	50	50				
cm	0.88	0.88	0.789	0.789	0.88	0.88				
Ra	173	173	173	173	173	173				
corrD	7.954	7.954	7.954	7.954	7.954	7.954				
gpas	1.00E-05	3.04E-05	8.21E-06	2.82E-05	3.26E-05	2.93E-05				
epas	-80	-72.24	-80.4	-77.86	-70.19	-90				
pcabarITS	0.0002	1.00E-08	5.00E-06	2.99E-06	2.82E-07	2.43E-07				

• Errors/Parameters comparison:

oma						
pcabarITD end0	0.0002	0.000116	5.00E-06	5.91E-06	2.82E-07	3.00E-07
pcabarITD end1	0.0002	0.000507	8.91E-06	9.83E-06	1.84E-06	2.70E-06
pcabarITD end2	0.0002	5.70E-05	3.98E-06	5.92E-06	5.66E-05	4.56E-05
shiftmIT	2	2	-13.8	-13.8	-13.8	-13.8
shifthIT	0	0	-4.8	-4.8	-4.8	-4.8
slopemIT	1	1	1.4	1.4	1.4	1.4
slopehIT	1	1	1	1	1	1
ghbarSom a	2.20E-05	8.93E-05	1.10E-05	4.14E-06	3.02E-07	2.72E-07
ghbarDen d0	2.20E-05	2.56E-05	1.10E-05	4.44E-06	3.02E-07	1.00E-08
ghbarDen d1	2.20E-05	3.46E-05	1.10E-05	5.64E-06	2.81E-06	3.23E-06
ghbarDen d2	2.20E-05	2.93E-05	1.10E-05	1.00E-08	1.02E-06	9.17E-07
eh	-43	-43	-43	-43	-43	-43
shiftmlh	0	0	11.4	11.4	11.4	11.4
gkbarlKir Soma	2.00E-05	1.86E-05	2.00E-05	1.42E-05	2.00E-05	1.61E-05
gkbarlKir Dend0	2.00E-05	1.96E-05	2.00E-05	2.11E-05	2.00E-05	2.42E-05
gkbarlKir Dend1	2.00E-05	2.92E-05	2.00E-05	8.79E-05	2.00E-05	1.28E-05
gkbarlKir Dend2	2.00E-05	2.95E-05	2.00E-05	2.35E-05	2.00E-05	1.55E-05
gkbarlASo ma	0.0055	0.01	0.0055	0.01	0.0055	0.003194

gkbarlADe nd0	0.0055	0.01	0.0055	0.001619	0.0055	0.004427
gkbarlADe nd1	0.0055	0.01	0.0055	0.01	0.0055	0.002416
gkbarlADe nd2	0.0055	0.01	0.0055	0.01	0.0055	0.001537
gnabarlNa PSoma	5.50E-06	7.81E-06	5.50E-06	5.08E-06	5.50E-06	9.13E-06
gnabarlNa PDend0	5.50E-06	3.52E-06	5.50E-06	7.50E-06	5.50E-06	4.70E-06
gnabarlNa PDend1	5.50E-06	2.98E-06	5.50E-06	5.84E-06	5.50E-06	7.88E-06
gnabarlNa PDend2	5.50E-06	7.31E-06	5.50E-06	7.70E-06	5.50E-06	1.65E-05

- Ran optimization 3 times consecutively, each time using the previous best result as initial value.
 - Initialized to **Destexhe default**.

All traces for Experiment 20170729T0304_E091710_bef

• Iteration #1:

All traces for Experiment 20170729T0304_E091710_aft

• Iteration #2:

All traces for Experiment 20170729T0947_E091710_aft

• Iteration #3:

All traces for Experiment 20170729T1044_E091710_aft

Error History

• Errors/Parameters comparis	on:
------------------------------	-----

0

slope error

01

1.5

1.5 2 2.5

2.5

3

2

1.5

1.5 2

time error

01

2.5

2.5

3

2

	Initialize to Destexhe	Iteration 1	Iteration 2	Iteration 3
Total error	23.18	6.984	6.698	6.469
Sweep error	14.46	2.509	2.813	3.071
LTS amp error	27.06	8.971	10.41	9.17
LTS time error	33.39	8.179	6.674	6.704
LTS slope error	17.82	8.276	6.896	6.931
Average LTS error	26.09	8.476	7.993	7.602
diamSoma	38.42	38.96	36.61	37.13
LDend1	12.49	58.45	87.69	86.94
diamDend1ToS	0.2676	0.1	0.1	0.1

oma				
LDend2	84.67	113.2	109	111.1
diamDend2To1	0.8268	1	1	0.971
distDendPerce nt	50	50	50	50
cm	0.88	0.88	0.88	0.88
Ra	173	173	173	173
corrD	7.954	7.954	7.954	7.954
gpas	1.00E-05	3.04E-05	2.97E-05	2.98E-05
epas	-80	-72.24	-50	-50
pcabarITSoma	0.0002	1.00E-08	7.94E-08	7.76E-08
pcabarITDend0	0.0002	0.000116	3.94E-05	2.49E-05
pcabarITDend1	0.0002	0.000507	0.000657	0.00066
pcabarITDend2	0.0002	5.70E-05	1.00E-08	1.00E-08
shiftmIT	2	2	2	2
shifthIT	0	0	0	0
slopemIT	1	1	1	1
slopehIT	1	1	1	1
ghbarSoma	2.20E-05	8.93E-05	8.02E-05	8.62E-05
ghbarDend0	2.20E-05	2.56E-05	6.58E-05	7.78E-05
ghbarDend1	2.20E-05	3.46E-05	2.82E-05	4.35E-05
ghbarDend2	2.20E-05	2.93E-05	5.65E-05	8.71E-05
eh	-43	-43	-43	-43
shiftmlh	0	0	0	0
gkbarlKirSoma	2.00E-05	1.86E-05	3.15E-05	6.13E-05
gkbarlKirDend0	2.00E-05	1.96E-05	2.02E-05	3.70E-05

gkbarlKirDend1	2.00E-05	2.92E-05	3.08E-05	4.18E-05
gkbarlKirDend2	2.00E-05	2.95E-05	3.24E-05	4.47E-05
gkbarlASoma	0.0055	0.01	0.01	0.008243
gkbarlADend0	0.0055	0.01	0.01	0.01
gkbarlADend1	0.0055	0.01	0.01	0.008574
gkbarlADend2	0.0055	0.01	0.01	0.009322
gnabarlNaPSo ma	5.50E-06	7.81E-06	1.01E-05	1.00E-08
gnabarlNaPDen d0	5.50E-06	3.52E-06	3.09E-06	1.82E-06
gnabarlNaPDen d1	5.50E-06	2.98E-06	4.43E-06	3.80E-06
gnabarlNaPDen d2	5.50E-06	7.31E-06	9.97E-06	4.82E-06

- Increased maximum number of iterations to 400. Increased maximum number of function evaluations to 2000. Changed LTS existence error from 10 to 20. Changed error ratios to Sweep:LTSamp:LTStime:LTSslope = 2:1:2:3
 - Initialized to Destexhe default

All traces for Experiment 20170730T0020_E091710_bef

All traces for Experiment 20170730T0020_E091710_aft

Changed error ratios to Sweep:LTSamp:LTStime:LTSslope = 3:1:2:3

 Initialized to Destexhe default

All traces for Experiment 20170731T0550_E091710_bef

All traces for Experiment 20170731T0550_E091710_aft

0

All traces for Experiment 20170730T1446_E091710_bef

Initialized to Christine's best values

All traces for Experiment 20170730T1446_E091710_aft

2		All re	al and	sim tr	aces			
-50 -		4		^				v_soma (recorded) !
-50 - -00 -100 - -100 - -100 - -100 - 	4000	5000	6000	7000	8000	9000	10000	
-200 -100 -100 -100 -100 -100 -100 -100	A de s a c							
-100 M	1000	0000	100000					
> 3000	4000	5000	6000	7000	8000	9000	10000	
0 0.2 -0.4 3000	4000	5000	6000	7000	8000	9000	10000	GABABi (simulated) !
1 0.5	Y UNT	A.D.7.151	Nuvv					m_itGHK (simulated) ! h_itGHK (simulated) m_m_ih (simulated)
$^{2}_{0} $ $^{2}_{0} $ $^{2}_{0} $ $^{2}_{0} $ $^{2}_{0} $	4000 3	5000	6000	7000	8000	9000	10000	
0 1 -1 -1 -2		4444	¥ ¥ ¥ ¥					ica (simulated) !
0005 Curre	4000	5000	6000 Time	7000 (ms)	8000	9000	10000	

Initialized to best values from singleneuronfitting5

All traces for Experiment 20170730T1841_E091710_bef

All traces for Experiment 20170730T1841_E091710_aft

0										
	Initialize to Destexhe - before	Initialize to Destexhe - after	Initialize to Christine - before	Initialize to Christine - after	Initialize to singleneu ronfitting5 - before	Initialize to singleneu ronfitting5 - after				
Total error	33.82	10.22	10.6	7.457	7.519	6.73				
Sweep error	17.7	4.24	1.758	2.938	2.133	2.338				
LTS amp error	30.62	14.1	10.98	8.813	11.39	7.747				
LTS time error	17.18	13	10.53	11.8	10.94	11.1				
LTS slope error	62.11	13.05	19.37	8.632	9.334	7.87				
Average LTS error	41.89	13.21	15.02	9.717	10.21	8.925				
diamSom a	38.42	38.96	38.42	38.79	36.24	37.97				
LDend1	12.49	58.45	12.49	65.9	120	106.3				
diamDend 1ToSoma	0.2676	0.1	0.2676	0.1136	0.1	0.1				
LDend2	84.67	113.2	84.67	104.4	117.2	102.6				
diamDend 2To1	0.8268	1	0.8268	1	0.7088	0.8071				
distDendP ercent	50	50	68.6	68.6	50	50				
cm	0.88	0.88	0.789	0.789	0.88	0.88				
Ra	173	173	173	173	173	173				
corrD	7.954	7.954	7.954	7.954	7.954	7.954				
gpas	1.00E-05	3.04E-05	8.21E-06	2.82E-05	3.26E-05	2.93E-05				
epas	-80	-72.24	-80.4	-77.86	-70.19	-90				
pcabarITS	0.0002	1.00E-08	5.00E-06	2.58E-06	2.82E-07	2.32E-07				

• Errors/Parameters comparison:

oma						
pcabarITD end0	0.0002	7.20E-05	5.00E-06	3.32E-06	2.82E-07	3.37E-07
pcabarITD end1	0.0002	0.000115	8.91E-06	5.83E-06	1.84E-06	1.08E-06
pcabarITD end2	0.0002	9.16E-05	3.98E-06	3.47E-05	5.66E-05	5.05E-05
shiftmIT	-2	-2	-13.8	-13.8	-13.8	-13.8
shifthIT	0	0	-4.8	-4.8	-4.8	-4.8
slopemIT	1	1	1.4	1.4	1.4	1.4
slopehIT	1	1	1	1	1	1
ghbarSom a	2.20E-05	1.73E-05	1.10E-05	3.84E-06	3.02E-07	6.33E-07
ghbarDen d0	2.20E-05	6.41E-06	1.10E-05	3.74E-06	3.02E-07	4.98E-07
ghbarDen d1	2.20E-05	0.001241	1.10E-05	3.64E-06	2.81E-06	8.37E-06
ghbarDen d2	2.20E-05	1.47E-05	1.10E-05	1.00E-08	1.02E-06	1.22E-06
eh	-43	-43	-43	-43	-43	-43
shiftmlh	0	0	11.4	11.4	11.4	11.4
gkbarlKir Soma	2.00E-05	0.000135	2.00E-05	2.23E-05	2.00E-05	8.84E-06
gkbarlKir Dend0	2.00E-05	0.000131	2.00E-05	1.86E-05	2.00E-05	1.75E-05
gkbarlKir Dend1	2.00E-05	0.001417	2.00E-05	5.08E-05	2.00E-05	1.00E-08
gkbarlKir Dend2	2.00E-05	0.000127	2.00E-05	3.61E-05	2.00E-05	2.80E-05
gkbarlASo ma	0.0055	0.001049	0.0055	0.01	0.0055	0.01

gkbarlADe nd0	0.0055	0.009727	0.0055	0.01	0.0055	0.01
gkbarlADe nd1	0.0055	0.01	0.0055	0.01	0.0055	0.003335
gkbarlADe nd2	0.0055	0.01	0.0055	0.01	0.0055	0.001926
gnabarlNa PSoma	5.50E-06	1.40E-06	5.50E-06	3.21E-06	5.50E-06	4.13E-06
gnabarlNa PDend0	5.50E-06	1.18E-06	5.50E-06	5.63E-06	5.50E-06	5.68E-06
gnabarlNa PDend1	5.50E-06	1.78E-06	5.50E-06	5.84E-06	5.50E-06	5.92E-06
gnabarlNa PDend2	5.50E-06	1.98E-05	5.50E-06	6.53E-06	5.50E-06	8.69E-06

Plan for next week

- minEASE:
 - Skip to **unchecked events** when using keyboard
 - Allow .mat files to be imported too
 - Recompute IEIs, ISIs, decay times, etc. after adding/deleting/changing events
- Single Neuron Model:
 - List all the equations used and try writing out an **explicit objective function**
 - Write code for **fitting across cells** (pick a **"stereotyped trace"** from all trials, Change parameters for each cell)
- Area paper:
 - Start writing background information for area paper
 - Decide on committee members, defense date and send emails
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)
 - Cohen (*Analyzing Neural Time Series Data*)

Plan for next week

- Single Neuron Model:
 - Organize all mechanisms in the model
 - Place all range parameters in GUI and fit again
 - Explore Ed's way of parallelizing Matlab without using a toolbox license.
 - List all the equations used and write out objective function explicitly
 - Figure out a way to fit across cells
- Area paper:
 - Browse recent literature on GABA B receptors
 - \circ $\,$ Decide on topic for area paper $\,$
- Knowledge buildup:
 - Sterratt et al (*Principles of Computational Modelling in Neuroscience*)

20170618~20170715

Single Neuron Fitting (cont'd)

• singleneuronfitting5.slurm:

- Fitted **10** cells with LTS amp:LTS time:LTS slope:sweep error ratio = **2:2:2:1**
- **20** initial conditions on Rivanna
- Passive parameters fitted:
 - diam_soma, diam_dend1tosoma, diam_dend2to1
 - L_dend1, L_dend2
 - ∎ gpas, epas
- Active parameters fitted:
 - ghbar_soma, ghbar_dend1, ghbar_dend2
 - gcabar_soma, gcabar_dend1, gcabar_dend2

😪 🚍 🗈 Figure 2: OPTIMIZERGUI (c) M3HA 2017 for E091710		
<u>File Edit View Insert Tools Desktop Window Help</u>		
집 🗃 🛃 🦕 🔍 🤍 🧐 🐙 🔏 - 🗔 🔲 🖽 💻		
Error Function Maker	N Controller	
Sweep name Use w Ledge Redge RMSE	Controller	
Engi710 0000 3 mat / 78 111 1 1507 Engi710 0000 8 mat / 78 111 1 2015 Engi710 0000 13 mat / 78 111 0 15 1 Engi710 0000 18 mat / 78 111 1 2035	O MANUAL 🖲 AUTO 🛛 JITTER 🔿 AUTO WI	
Engitin nnn 12 ma Engitin nnn 18 ma Engitin nnn 18 ma Engitin nnn 28 ma Engitin nnn 28 ma Engitin nnn 18 ma Engitin nnn 18 ma 28 min 1 223		
E001710 0000 14 ma	NEURON parameters	
E001710 0000 5 mat V 78 000 2 1182	diam_soma 🔽 📢 💹 🕨 36.2	shift ih dend2 🔲 📢 🚺 🔰 11
	L dend1	gcabar soma
E001710 0001 2 mot V 28 11 15655	diam dend1tosom 🖌 📢 🕨 🕨 0.1	gcabar dend1 🗸 📢 👔 🕽 2.37
E001710 0001 8 mat 28 10 1 264 E001710 0001 18 mat 28 10 1 7156 E001710 0001 18 mat 28 10 1 7052	L_dend2 V (117	gcabar_dend2 🗸 🚺 🕅 3.35
Engliftin ninit 23 ma 2 28 111 2 0023 Engliftin ninit 4 mat 2 28 111 2 6243 Engliftin ninit 4 mat 2 28 111 2 6243	diam_dend2to1 🖌 🚺 🚺 0.709	shiftm_it_soma 🔲 🕢 💹 🕨 -13
Engi710 0001 0 mat / 78 00 2 6884 Engi710 0001 10 mat / 78 00 2 6884 Engi710 0001 10 mat / 78 00 2 6884 Engi710 0001 10 mat / 78 00 2 6018	gpas 🖌 🚺 🚿 🕨 3.26e-05	shiftm_it_dend1 🔲 📢 💹 🕨 -13
E001710 0001 5 mat V 28 20/0/ E001710 0001 10 ma	epas 🔽 📢 🐹 🕨 -70.2	shiftm_it_dend2
	corrD	shifth_it_soma
Enditin finit in ma V 28 11 2 88/17 Enditin finit in ma V 28 11 1 66/17 Enditin finit in ma V 28 11 1 66/17	cm 🗌 📢 🐹 🕨 8.80e-01	shifth_it_dend1
E001710 0002 18 ma V 28 11 1 8045 E001710 0002 23 ma V 28 11 1 6017 E001710 0002 4 mat V 28 11 2 28 11 2 2573	Ra 1.73e+02	shifth_it_dend2
E001710 0002 0 mat V 2 2 3030	distdendpercent 🔲 🔳 🔯 🕨 50	slopem_it_soma
E001710 0002 24 ma	ghbar_soma 🔽 📢 🚺 💽 1.00e-08	slopem_it_dend1 1.
E001710 0002 10 ma V 28 10 2675 E001710 0002 15 ma V 28 10 25423 E001710 0002 20 ma V 28 10 25423	ghbar_dend1 ☑	slopem_it_dend2
E001710 0002 25 ma V 28 11 2 3355 E001710 0003 8 mat V 28 11 28 18 28 18 28 19	ghbar_dend2 ☑ ▲ 📓 🕨 1.80e-07	slopeh_it_soma
E001710 0002 12 ma V 28 10 1 0201	shift_ih_soma	slopeh_it_dend1
E001710 0003 4 mat	shift_ih_dend1	slopeh_it_dend2
E001710 0003 14 ms V 28 10 1 0756		
E001710 0003 5 mat 2 78 11 14051		
Englitin nong 15 ma Englitin nong 25 ma Englitin nong 25 ma Englitin nong 25 ma	Load P-file Change Bounds	
Weighted Total Sweep Error = 0.777	AUTO mode	
LTS Property Use? w Error	 Log simplex errors and params 	
peak amp 🔽 1 0.546	1 2 1 1 Maxiter 20(* 1 numiC	2 12
peak time 🔽 1 0.656 max slope value 🔽 1 0.689	2 MaxFunEvals 1000	
Total LTS Err = 0.63	3 TolFunRel 0.0100	
LTS/TotSwpErr weight ratio = 6		
Weighted Total Error = 0.651		
IIII+ Busy		

• D091710, before optimization

J	V	J	J	J
J	vl	yl	yl	· l
- tum	ru-	-ver		- man
J	J	J	v	V
· · · · · · · · · · · · · · · · · · ·	~		~~~~~	~
Ven	Ven	Ver-	Vu-	Um-
Ne	Ju-	Ju-	Ju	Ja
Werner	rum	ulu	u-	Um-
1 dum	Lum	Lalun-	1 Jun	Lum
Mar	Wasan-	Jam	Jan	Van
L-dallar			Last Maria	
1	L	L		

• E091710, before optimization

• **E091710**, after optimization

V	V	V		M
·	J	w	vl	w
	v.	v		· · · · · · · · · · · · · · · · · · ·
W	V	V-	V	W
	w	·····	- w	v.
····		. V.	V	V
When when when when when when when when w	<u>u</u>	<u></u>	· ····································	· ·····
	<u> </u>	····		
		. Labor		
Ver		. Hor		North Contraction of the second secon
- Last Mon	Ladder	Latter b	Law	AAA

• B091810, before optimization

• **B091810**, after optimization

.v	V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V	V
w	w			v
			V-	
V	V	V		V
			V	
			V	
				8 (British 18 18
8				
L			<u> </u>	- L

• **D091810**, before optimization

• E091810, before optimization

• **F091810**, before optimization

• A092110, before optimization

J	V	V		
J	{	[¥	[[v
<u>ب</u> ــــــ				
J	V		[/	
<u>.</u>		[[- yu
-		·	Vou	
	- V	- Va-	- W	- W
, b				
to .	Hum	How		Hou
Jutton	Gattan	- Witten	- William	Fottom

C092110, before optimization 0

C092110, after optimization 0

• B092710, before optimization

• **C092710**, before optimization

Plan for next week

- Single Neuron Model:
 - Organize all mechanisms in the model
 - List all the equations used and write out objective function explicitly
- Johnston & Wu:
 - Read Ch 7~15, Appendix A & B
- Area paper:
 - Browse recent literature
 - Think about topic for area paper

5/20/2017~6/5/2017

<u>minEASE</u>

• Default parameters:

Direction of PSC ("E" or "I")	E
Lowpass Filter Cutoff Frequency (Hz)	3000
Lowpass Butterworth Filter Order	8
Noise Window Size (samples)	100
Noise Skewness Cutoff	0.2
Noise Excess Kurtosis Cutoff	0.2
Signal to Noise ratio for an event	2
Minimum Amplitude Threshold for an event (pA)	8
Moving Average Filter Window (ms)	0.5
Minimum Baseline Difference (pA)	8
Crude Burst Region Size (events)	50
Minimum Spikes Per Burst	3
Maximum Inter-Spike Interval (ms)	10
Minimum PSC Amplitude (pA)	10
Maximum PSC 10-90% Rise Time (ms)	8
Maximum PSC 50% Decay Time (ms)	50
Total PSC Trace Length (ms)	50
PSC Trace Length Before Breakpoint (ms)	3
Start Detection (sec)	0
End Detection (sec or "end")	end
Seal Test Window [start, end] (ms)	[1000, 1050]

- Autodetection results so far:
 - Event Detection & Classification
 - Original current trace is in black
 - Moving-average-filtered current trace is in magenta
 - Direction-filtered current trace is in green
 - PSCs are in red
 - Bursts are in yellow

- Burst Detection
 - Maximum Inter-Spike Interval = 10 ms
 - Minimum Spikes Per Burst = 3
 - All event breakpoints are in blue
 - "Crude burst regions" are in green
 - "Bursts" are in yellow

Zoomed in to a "burst":

Plan for next week

- Continue improving minEASE until Tuesday
- Resume improving fitting on Wednesday

2/10/2017

Made solutions

- ACSF 10x:
 - Added water to ~1800 mL and mixed in 2 L bottle
 - Added water to 2 L in **volumetric flask** (Actual: slightly above the line)
 - Transferred back to 2 L bottle and stored in fridge

Compound	Final Conc. (mM) for 1x	MW (g/mol)	g / 2 L for 10x*
ксі	2.5	74.55	3.7275
Glucose	10	180.16	36.03
NaCl	126	58.44	147.27
aH₂PO₄·H₂O	1.25	137.99	3.4498
MgSO₄·7H₂O	1	246.47	4.9294
CaCl₂·2H₂O	2	147.01	5.8804

* Actual figures used this time was from the website

<u>2/16/2017</u>

- Internal solution:
 - Potassium-gluconate internal (Considered relatively physiological; aka Sun's GABAB internal)
 - Made 0.99 mL aliquots
 - Added ~75 mL initially
 - Measured the pH while stirring, increasing the pH to 7.3~7.4 by adding KOH (First 4M, then 1M)
 - Final pH was: 7.30
 - Osmolality was 282, 272, 277, 276 (target 293 mmol/kg)
 - Stirred a little more and wait longer: osmolality was 297, 297, 278, 279, 275 (target 293 mmol/kg)
 - Total solution was ~88 mL (88 0.99 mL aliquots)

Compound	Final Conc. (mM)	MW (g/mol)	g / 100 mL (add < 95 mL initially though)
K-gluconate (D-gluconic acid)	100	234.24	2.3424
MgCl ₂ ·6H ₂ O	9	203.30	0.1830
ксі	13	74.55	0.0969
CaCl ₂ ·2H ₂ O	0.07	147.01	0.0010
Hepes buffer	10	238.3	0.2383
EGTA	10	380.35	0.3804

* Actual figures used this time was from the website

<u>2/17/2017</u>

• **10 uL ATP & GTP** aliquots to be added to internal on the day of:

Compound	Final Conc. (mM)	MW (g/mol)	g / 1 mL
Na ₂ ATP	2	551.1	0.1102
NaGTP	0.5	523.2	0.0262

2/13/2017~2/26/2017

Chloride-dependent RT Network

- All files are under /media/adamX/RTCI/
- File structure:

File name	Description	Requires	Used By
neuronlaunch. m	Launches NEURON with simulation commands and plot output figures	run2.hoc run.hoc (obsolete) show_RTnet.m raster_plot.m single_neuron.m	
run.hoc	Runs network simulation (obsolete)	net.hoc dummy.mod	neuronlaunch.m (potentially)
run2.hoc	Define global parameters (ncells & celsius) and load procedures	net.hoc	neuronlaunch.m
net.hoc	Procedures for network simulations: buildnet(), randleak(), vinit(), REsinglecp(), REsingleact(), RErandact(), sim()	RE.tem gabaA_Cl.mod gabaa.mod (potentially)	run.hoc run2.hoc
RE.tem	Template file for defining reticular thalamic neurons	HH2.mod ITs.mod IKCa.mod cadecay.mod cldif2.mod	net.hoc
show_RTnet.m	Shows network topology for each RT network	/Downloaded_Fun ctions/dirr.m	neuronlaunch.m
raster_plot.m	Shows a spike raster plot for each set of neurons	/Downloaded_Fun ctions/dirr.m	neuronlaunch.m
single_neuron. m	Shows single neuron voltage & chloride concentration traces for each neuron	/Downloaded_Fun ctions/dirr.m	neuronlaunch.m
HH2.mod	Fast Na+ and K+ currents responsible for action potentials (Destexhe, 1992)		RE.tem
ITs.mod	Low threshold calcium current (Sohal, 1997)		RE.tem

IKCa.mod	Linear calcium-dependent potassium current (Sohal, 2003)		RE.tem
cadecay.mod	d Fast mechanism for submembranal Ca++ concentration (cai) (Destexhe, 1995) RE.tem		RE.tem
cldif2.mod	Chloride accumulation and diffusion with chloride pump (Lineweaver-Burke equation) and chloride leak (<u>Jedlicka et al</u> <u>2011</u>)		RE.tem
gabaA_CI.mod	Synaptic GABAergic mechanism that's dependent on chloride concentration (<u>Jedlicka et al</u> <u>2011</u>)		net.hoc
gabaA_Cl.mod	Simple GABA-A receptor		net.hoc

- Output folder: Use current date & time in the format: **YYYYMMDDThhmm**
- Output files (in output folder):

File name	Content
sim_params.csv	simulation parameters
sim_commands.txt	simulation commands
sim_output.txt	simulation standard outputs
RERE.syn	RE-RE synaptic connections
RE.spi	RE spike train output
RE.singv	RE single neuron voltage traces
RE.singcli	RE single neuron chloride concentration traces
RE.leak	RE single neuron leak properties

- Parameters (neuronlaunch.m & run2.hoc)
 - Global parameters to be defined at the start of NEURON, to be consistent with run.hoc or run2.hoc:

Name	Initial value	Description
ncells	100	# of cells
celsius	34	Temperature of experiment (celsius), Sohal & Huguenard 2003

• Network parameters:

Name	Initial value	Description
REREradius	4	Radius of intra-RE connections, Sohal & Huguenard 2003
sp_thr	0	Action potential threshold (mV)
syn_del	1	Synaptic delay (ms)
syn_w	0.5	Synaptic weight (fraction of channels activated)

• F	• RE cell parameters:			
Name	Initial value	Description		
RErest	-77	Resting membrane potential (mV) of RE cells, <u>Sohal &</u> <u>Huguenard 2003</u>		
REgpasLB	4.50E-05	Lower bound for passive leak conductance (S/cm^2) in RE cells, Sohal & Huguenard 2003		
REgpasUB	5.50E-05	Upper bound for passive leak conductance (S/cm^2) in RE cells, Sohal & Huguenard 2003		
REGgaba	0.04	Conductance (µS) of GABA-A synapses on RE cells Sohal & Huguenard 2003: to be varied between 40~100 nS		
gaba_grel	0.2	Relative conductance of HCO3 of the GABA-A receptor		

• F	Activation mo	ode:
Name	Initial value	Description
actmode	1	Activation mode: 1 - Activate a single RE cell by injecting a current pulse 2 - Activate a single RE cell by changing the membrane potential instantaneously 3 - Activate RE cells with a Gaussian likelihood by changing the mp instantaneously

• Activation parameters for 'cp' mode

Name	Initial value	Description
actcellID	50	ID # of neuron to activate
cp_start	500	Current pulse delay (ms)
cp_dur	200	Current pulse duration (ms)
cp_amp	10	Current pulse amplitude (nA)

$\circ~$ Activation parameters for 'single' or 'random' mode:

Name	Initial value	Description
actcellv	0	Voltage (mV) to set activated neuron to
actwidth	50	Width of Gaussian distribution for randomly activating cells
actmaxp	0.5	Maximum likelihood of activation at center

• Simulation parameters:

Name	Initial value	Description
niters	1	Number of times to run simulation
tstop	2000	Total time of simulation (ms)
dt	0.1	Time step of integration (ms)

 Plot flags: 		
Name	Initial value	Description
plotspikes	1	Whether to plot spike data
plotsinglene urondata	1	Whether to plot single neuron data

• ID #s of neurons to plot:

Name	Initial value	Description
act	50	ID # of the activated neuron
act_left1	49	ID # of the neuron one below the activated neuron
act_left2	48	ID # of the neuron 2 below the activated neuron
far	1	ID # of a far away neuron

• Procedures (**net.hoc**)

- **buildnet**(REGgaba, gaba_grel, REREradius, sp_thr, syn_del, syn_w, sREREsynF_full)
 - Creates neurons (**ncells** of them) according to the template in **RE.tem**
 - Places a GABA-A receptor (gabaA_CI.mod) on the soma of each neuron with gmax (maximum conductance in µS) & grel (relative conductance of HCO₃) set by REGgaba & gaba_grel, respectively.
 - Set up GABA-A synapses between RE cells:
 - Each cell projects to each of the adjacent **REREradius** cells on either side (total # of synapses should be **2*REREradius*ncells**)
 - There are **no autapses**
 - There are **no boundaries**; the network is **circular**
 - The threshold for an action potential to occur is **sp_thr** mV
 - The delay accounting for synaptic transmission is **syn_del** ms
 - The weight of synaptic activation is **syn_w** (fraction of channels open), i.e., **gmax will be multiplied by this fraction**
 - Print synaptic map to a file with name sREREsynF_full (currently RERE.syn)
 - Set up vectors to record all spike events
 - Set up vectors to record all single neuron voltage & chloride concentration traces

- **randleak**(REgpasLB, REgpasUB, sREleakF_full)
 - Randomize leak properties for each RE cell using a uniform distribution; currently only gpas is randomized (from REgpasLB to REgpasUB)
 - Print leak properties to a file with name sREleakF_full (currently RE.leak)
- vinit(RErest)
 - Initialize all mechanisms and point processes (finitialize())
 - Set initial membrane potential of each neuron to **RErest**
- **REsinglecp**(actcellID, cp_start, cp_dur, cp_amp)
 - Place a current clamp electrode (IClamp) at the neuron with ID # actcelIID
 - Current pulse delay is **cp_start** ms
 - Current pulse duration is **cp_dur** ms
 - Current pulse amplitude is **cp_amp** nA
- **REsingleact**(actcellID, actcellv)
 - Set initial membrane potential of the neuron with ID # actcellID to be actcellv mV
- **RErandact**(actcellID, actwidth, actmaxp, actcellv)
 - With a probability set by a Gaussian distribution with maximum actmaxp centered at actcellID with standard deviation actwidth, set initial membrane potential of a neuron to be actcellv mV
- sim(tstop, dt, plotspikes, plotsingleneurondata, sREspikeF_full, sREvF_full, sREcliF_full)
 - Using a total time of **tstop** and a time step of **dt**, simulate
 - If plotspikes is 1, print the spike train data to a file with name sREspikeF_full (currently RE.spi)
 - If plotsingleneurondata is 1, print the single neuron voltage & chloride concentration traces to a file with name sREvF_full (currently RE.singv) & sREcliF_full (currently RE.singcli), respectively

- Preliminary results
 - Network topology

• Network topology zoomed in

 Without chloride-dependence (gabaa.mod), gmax = 0.070 μS, set single neuron to 0 mV

 Without chloride-dependence (gabaa.mod), gmax = 0.070 μS, set single neuron to 50 mV

 Without chloride-dependence (gabaa.mod), gmax = 0.070 μS, set random neurons to 0 mV

Without chloride-dependence (gabaa.mod), gmax = 0.070 μS, set random neurons to 50 mV

 With chloride-dependence (gabaA_Cl.mod), gmax = 0.070 µS, set single neuron to 0 mV

 With chloride-dependence (gabaA_Cl.mod), gmax = 0.070 μS, set single neuron to 50 mV

 With chloride-dependence (gabaA_Cl.mod), gmax = 0.070 μS, set random neurons to 0 mV

 With chloride-dependence (gabaA_CI.mod), gmax = 0.070 μS, set random neurons to 50 mV

• gmax = 0.040 μ S, set single neuron to 0 mV

gmax = 0.040 μS, applied a current pulse (delay 1000 ms, duration 100 ms, amplitude 10 nA) to single neuron

 \circ gmax = 0.040 µS, applied a current pulse (delay **500 ms**, duration 100 ms, amplitude 10 nA) to single neuron

То

45

From

 $\circ~$ gmax = 0.040 $\mu S,$ applied a current pulse (delay 500 ms, duration **200 ms**, amplitude 10 nA) to single neuron

 When code was first transferred from run.hoc to neuronlaunch.m, celsius was not implemented correctly and was at the NEURON default 6.3 degrees Celsius. This produced extremely slow action potentials:

• Fixed placement of **finitialize()** (should be before soma voltage is set) and plotted chloride concentration.

• Why does chloride concentration decrease?

Plan for next week

- LGN electrophysiology:
 - Try patching on Wed, Fri, Sat
- Chloride-dependent RT Network:
 - Understand how each mechanism works and potentially change synaptic weights as a function of Ninputs
 - Change synaptic weights and chloride extrusion time constants
 - Vary parameters such as celsius, syn_del, syn_w, REGgaba, cp_dur, cp_amp
- Data Analysis voltage traces:
 - Fix **find_LTS.m** to enforce overrules.
 - Rerun dclampDataExtractor.m with all the overrules enforced (dclampDataExtractor14.slurm, giving the version old15)
 - Run compare_statistics.m: Compare with version 13 (old13); find all traces with altered LTS onset times and reclassify; find all traces with altered spikes per peak and reclassify
 - Ran **update_figures.sh**. Examined each special cases folder and looked for any classification discrepancies
 - Run find_special_cases.m, reclassify. Run copy_LTS_figures.sh, then backup_figures.sh
 - Run find_more_gray_area_traces.sh, reclassify
 - Run find_remaining_vtraces_scaled.m & check_filecounts.sh again to make sure all 7430 voltage traces were classified both in the set peakclass and in the set noisiness.
 - Run **update_figures.sh** again. Examine each special cases folder and look for any classification discrepancies
 - Compute new histograms, thresholds, correlations, bargraphs, passive parameters under all fitmodes
- Brian's tasks:
 - Devise a good threshold for "noisy recordings"
 - Take out any trace with error greater than the threshold from the trace averaging. Compute the **mean recorded voltage change** $(\Delta \bar{V}_{rec})$, the **mean current pulse amplitude** (**cpa_mean**), the **mean pulse width** (**pw_mean**) by averaging over all traces remaining.

20170123

12/19/2016

Audio monitor

Dear Mark,

This is what I found in a forum:

"They suggested me to check on WPI for an external audio monitor." I couldn't find it though.

"If you want the least expensive solution, just hook up an active speaker (from your mp3 player). There are connector adapters for that. You might want to mute the audio when the Axoclamp input is in open circuit condition (dedicated audio monitors may have a feature to suppress upon large amplitude oscillations / amp saturation) or, if possible, ground the input with a clip (does not work with modern pipette holders). "

"If you solder a BNC cable with a Audio 3.5mm Cable, it is possible to connect directly the BNC output (Monitor) to the Mic jack in the PC, and in windows 7, there is a mode were all sounds received via the Mic are re-directed to the system speakers, that worked for me."

<u>https://www.researchgate.net/post/is_there_a_way_to_audio_monitor_an_electrophysiology_sig</u> nal_using_Clampex_10 [accessed Dec 19, 2016].

I also found this page, which shows you how to build a voltage-controlled oscillator: http://www.instructables.com/id/How-to-Make-a-Voltage-Controlled-Oscillator/

Which one will be best?

Thanks, Adam

1/9/2017

Literature search on LGN slice recordings

- Geoff:
 - Thalamic Relay Functions and Their Role in Corticocortical Communication: Generalizations from the Visual System http://www.sciencedirect.com/science/article/pii/S0896627301005827
 - Tonic and burst firing: dual modes of thalamocortical relay <u>http://www.sciencedirect.com/science/article/pii/S0166223600017148</u>
 - Developmental Remodeling of the Retinogeniculate Synapse <u>http://www.sciencedirect.com/science/article/pii/S0896627300001665</u>
- Adam:
 - Electrophysiological Properties of Dorsal Lateral Geniculate Neurons in Brain Slices from ME7 Scrapie-Infected Mice <u>http://www.sciencedirect.com/science/article/pii/S0014488697967133?np=y</u>
 - Changes in firing pattern of lateral geniculate neurons caused by membrane potential dependent modulation of retinal input through NMDA receptors <u>http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2007.131540/full</u>

Protocols for LGN slice recordings

- Immunohistochemistry:
 - Excitatory cell marker? CAMKII?
- Biocytin-filled projections:
 - Coronal sections should show axons going rostro-ventro-lateral

- Single cell properties:
 - I-V curve
 - passive properties (input resistance, time constant)
 - resting membrane potential
 - action potential firing threshold
 - action potential shape (spike amplitude, AHP amplitude, spike rise time, spike decay time, spike half width)
 - morphology (biocytin fills)
- Synaptic properties:
 - EPSP shape (amplitude, rise time, decay time)
 - firing patterns evoked by a pulse train of afferent stimuli
- Protocols:
 - Slicing:
 - 250 um coronal sections with caudal down (cut off cerebellum to form flat end)
 - After pipette is in solution:
 - Amplifier at V-CLAMP mode, reading I
 - Open 00_VC_gap_free.pro
 - Reset **Data File Names** to reflect new cell
 - Remove any previous holding voltage on amplifier or Clampex
 - Open default Membrane Test (5 mV pulse at 10.0 Hz)
 - Right before breaking in:
 - Reset **pipette offset** so that no current is applied at baseline
 - Keep amplifier at V-CLAMP mode, recording I
 - Hold voltage at -70 mV with amplifier (since Clampex can't hold potentials when the default Membrane Test is used)
 - After breaking in:
 - Gap free (A20170111_0000.abf):
 - Duration: 60 sec
 - Switch amplifier to **I** = **0**, reading **Vm**
 - Remove holding voltage on amplifier
 - Membrane test for passive properties (input resistance, time constant)?
 - Open 01_VC_membrane_test.pro
 - Make low-pass Bessel filter 100 kHz
 - Switch amplifier to V-CLAMP mode, reading I
 - Hold at -70 mV with Clampex
 - Step (A20170111_0001.abf):
 - Amplitudes: -75 mV
 - Duration: 20 ms
 - Frequency: 20 Hz (every 50 ms)
 - Repetition: **500** sweeps (**25 sec** total)

- For synaptic events:
 - Keep amplifier at V-CLAMP mode, reading I
 - Open 02_VC_synaptic_events.pro
 - Hold at **-70 mV** with Clampex
 - Make low-pass Bessel filter 5 kHz
 - Step (A20170111_0002.abf):
 - Amplitudes: -70 mV
 - Duration: 30000 ms
 - Frequency: **0.033 Hz** (every **30 s**)
 - Repetition: **10** sweeps (**5** min total)
- For resting membrane potential/spontaneous spiking activity:
 - Switch amplifier to I = 0, reading Vm
 - Open 03_I0_spontaneous_activity.pro
 - Step (A20170111_0003.abf):
 - Amplitudes: **0**
 - Frequency: 0.1 Hz (every 10 s)
 - Repetition: **12** sweeps (**2** min total)
- For I-V curve/action potential threshold/FI plot:
 - Open 04_CC_IV_curve.pro
 - Switch amplifier to I-CLAMP NORMAL, reading Vm
 - Apply holding current with amplifier so that membrane potential is -55 mV
 - Step (A20170111_0004.abf):
 - Amplitudes: -200:25:300 pA
 - Duration: 1000 ms
 - Frequency: **0.1 Hz** (every **10 s**)
 - Repetition: **21** sweeps (**3.5 min** total)
- For I-V curve:
 - Current clamp
 - Apply holding current so that membrane potential is **-70 mV**
 - Step (A20170111_0005.abf):
 - Amplitudes: -200:25:300 pA
 - Duration: 1000 ms
 - Frequency: **0.1 Hz** (every **10 s**)
 - Repetition: **21** sweeps (**3.5** min total)
- For biocytin fill:
 - 5% biocytin made up in H_2O
 - Retract slowly under membrane test Patch mode to let membrane reseal (resistance has to go back to Giga Ohms)
 - Washout excess biocytin with ACSF for 20 min
- Backup protocols
 - For EPSP:
 - Current clamp

- Apply holding current so that membrane potential is -60 mV
- Stimulate optic tract with bipolar tungsten electrode:
 - Amplitudes: 1-40 V
 - Duration: 50 ms
 - Frequency: 1 Hz
 - Repetition:
- Biocytin fill for sharp electrode:
 - 2% biocytin made up in 0.05 M Tris/1 M KCI (resistance 70–150 MV)
 - Current clamp
 - Step:
 - Amplitude: 0.6~0.9 nA
 - Duration: 300 ms
 - Frequency: 0.6 Hz (every 1667 ms)
 - Repetition: 540 (a minimum of 15 min)
- Membrane test for sharp electrode:
 - Current clamp
 - Apply holding current so that membrane potential is -60 mV
 - Record holding current value
 - Step:
 - Amplitudes: -50 pA
 - Duration: 100 ms
 - Frequency:
 - Repetition:
- Tested protocols with model cell
- Attempted to record in a 2-month old mouse:
 - ACSF was 298 mmol/kg
 - NMDG was 310 mmol/kg
 - Pipette resistances were 2.4~3.3 MOhm (Thin-wall pipettes with I.D. 1.10 mm and O.D. 1.50 mm were used under previous puller settings)
 - LGN:
 - Under 5X:

- No Gigaohm seal was formed. Possible reasons:
 - The slices were unhealthy (the extracellular matrix is very loose, and the cell boundaries disappear when approached by a pipette). Perfusion might have been imperfect; note color of brain next time.
 - Positive/negative pressure too high (3~5 mL was used for positive pressure; 4~5 mL was used for negative pressure)

1/4/2017~1/17/2017

Passive Fitting (*cont'd)

- Made geometry (L, diam of soma and dendrite) params:
 - Forced **length of soma** to be equal to the **diameter** to reduce the number of parameters
 - Forced dend1[1] and dend1[2] (the middle and distal dendrite, respectively) to have equal diameters diam_dend2 and equal length ½ * L_dend2
 - Initial values and boundaries for each parameter (based on the distribution of the estimated parameters from the curve-fitting method):

Parameter	Initial value (µm)	Lower bound (µm)	Upper bound (µm)
diam_soma	38.42	30	100
L_dend1	12.49	5	120
diam_dend1	10.28	1	30
L_dend2	84.67	5	120
diam_dend2	8.5	1	30

- Some questions:
 - What bounds would be more physiological?
 - Should we have restrictions on the relative lengths and diameters of each dendritic segment?
- Made sure fitting still works (the following was for 5 different cells x 4 pharm conditions at 200% g incr):

All traces for Experiment 20170114T1254

- Difficulty translating the results from the curve-fitting method to the biophysical model:
 - In NEURON, the soma is modeled as a cylinder, not a sphere as in the ball-and-stick model. What is the equivalent length & diameter of the cylinder given the diameter of the sphere?
 - In the biophysical model, there are 2 or 3 dendritic compartments (Destexhe's or Christine's, respectively). However, using only two terms in the curve-fitting method yields estimates for the length and diameter of a single dendritic compartment. How to decide how to convert a single length + diameter pair for the dendrite into two or three pairs?
 - Possible approach #1: Keep equal lengths and diameters for all compartments initially
 - Possible approach #2: Set the lengths and diameters according to original proportions
- Removed active channels during passive fitting

All traces for Experiment 20170114T2152

• Change interval of passive fit to just **160 ms** (including the **10 ms** current pulse)

• Fitted all trials from the same cell (**E091710**, which was the cell that the initial parameters were fitted to by Christine)

• Just to show that all **12** different GABA IPSC curves (4 pharm x 3 G incr conditions) will be used in the active fit:

• Fitted E091710's passive traces with all passive params changing

• Fitted E091710's passive traces with only gpas and epas changing

• Fitted E091710's passive traces with only diameters changing

• Fitted E091710's passive traces with only Lengths of dendrites changing

• Fitted E091710's passive traces with gpas, epas & Lengths of dendrites changing

Condition	Original	All params	gpas epas	All diams	All Ls	gpas epas all Ls
Total error	50	~8	~9	~15	~20	~8
diam_soma	38.4	50.7	38.4	65	38.4	38.4
L_dend1	12.5	111	12.5	12.5	120	57.7
diam_dend1	10.3	2.73	10.3	1.03	10.3	10.3
L_dend2	84.7	17.6	84.7	84.7	97.5	11.1
diam_dend2	8.5	20.1	8.5	22.2	8.5	8.5
gpas	8.21e-6	3.60e-5	2.59e-5	8.21e-6	8.21e-6	3.01e-5
epas	-80.4	-60	-105	-80.4	-80.4	-54.9

• Overall comparison:

• Modified optimizergui_4compgabab.m:

- 2017-01-14 Added num_buildparams and added build parameters to paramnames, parammax, parammin, paraminit, dolog
- 2017-01-15 Shortened cprwin_orig from [100, 500] to [100, 260] to be consistent with dclampPassiveFitter.m
- 2017-01-16 Added rowmode so that each pharm, gincr pair is a row for rowmode == 2
- 2017-01-17 Make **cm** and **Ra** fixed values
- 2017-01-18 Changed 'MaxIter' & 'MaxFunEvals' to 200
- Modified run_neuron_once_4compgabab.m:
 - 2017-01-14 Added **build()** to sim_cmd
 - 2017-01-14 Added **sim_mode** to both build() and sim() of sim_cmd
- Modified singleneuron4compgabab.hoc:
 - 2017-01-14 Build the TC neuron with arguments: 'diam_soma', 'L_dend1', 'diam_dend1', 'L_dend2', 'diam_dend2'
 - 2017-01-14 Added TC4_pas.tem so that active channels can be turned off when performing passive fitting
- Modified **TC4.tem**:
 - 2017-01-14 Removed tc4.geo and set up geometry in init with arguments
- Created **TC4_pas.tem**:
 - 2017-01-14 Modified from TC4.tem with active mechanisms removed
- Modified dclampDataExtractor.m:
 - 2017-01-16 Changed current pulse response to last just 150 ms (cprwin is changed from [95, 500] to [95, 260])

- Modified **FindIndToFit.m**:
 - 2017-01-16 Use all folders of the form **TAKE_OUT_*/*.png**
- Modified **find_LTS.m**:
 - 2017-01-16 Accounted for the condition that npks == 0 (no local maximums exist)
- Modified optimizer_4compgabab.m:
 - 2017-01-17 Modified runauto so that it will fit current pulse response
- Modified fminsearch3_4compgabab.m:
 - 2017-01-17 Now saves the error figure and params as .p & .mat files
 - 2017-01-17 Now logs everything using log_errors_params.m
 - 2017-01-17 Changed outparams.runnum_auto to be current number (removed "+ 1")

1/17/2017~1/21/2017

Optimization algorithm

- Cleaned up code and understood the optimization algorithm implemented in **fminsearch3_4compgabab.m**:
 - Algorithm: "Nelder-Mead simplex direct search"
 - Optimization parameters used:

Parameter	Value	Meaning
tolf_rel	0.05	relative error tolerance (w.r.t. smallest error)
tolx_rel	0.05	relative parameter change tolerance (w.r.t. best set of parameters)
usual_delta	0.5	relevant increment for non-zero parameters
zero_term_delta	0.00025	absolute increment for zero parameters
rho	1	used in the computation of the "reflection point" and others
chi	2	used in the computation of the "expansion point"
psi	0.5	used in the computation of the "contraction points"
sigma	0.5	used in the performance of "shrink"

• Step 1: Transform parameters to **unconstrained** space

• For parameters used for fitting, transform initial values into the range $\begin{bmatrix} 2 & - \end{bmatrix}$

$$\left|\frac{3\pi}{2},\frac{5\pi}{2}\right|$$

 $\begin{bmatrix} 2 & 2 \end{bmatrix}$ nonlinearly using **arcsin**:

$$p = \arcsin(2\frac{x - LB}{UB - LB} - 1) + 2\pi$$

where LB and UB are the lower and upper bounds, respectively.

- Step 2: Initialize simplex: a convex region in the n-dimensional space with n+1 vertices:
 - The first vertex is the set of **initial values**
 - Modified each parameter in turn by the following to get the 2nd to n+1th vertices:
 - If the parameter is not zero, increment parameter by:

usual_delta * parameter value

- If the parameter is zero, increment parameter by zero_term_delta
- Sort vertices in ascending total error value so that the first vertex has the lowest total error
- Step 3: Compute the "reflection point" and determine whether to use it

- Find the worst point (pworst) and compute the average of the better n points (pbar)
- Compute the "reflection point" (pr): the point rho*||pbar pworst|| away from pbar in the opposite direction of pworst
- Compute the error associated with the "reflection point"
- If the error associated with the reflection point is better than the previous best point, move on to Step 4a
- If the error associated with the reflection point is not better than the previous best point but better than the second worst point, replace the worst point with the "reflection point"; move on to Step 6
- If the error associated with the reflection point is not better than the second worst point but better than the worst point, move on to Step 4b
- If the error associated with the reflection point is not better than the worst point, move on to Step 4c
- Step 4a: Compute the "expansion point" and determine whether to use it
 - Compute the "expansion point" (pe): the point chi*rho*||pbar pworst|| away from pbar in the opposite direction of pworst
 - Replace the worst point with the better of the "expansion point" and the "reflection point"; move on to Step 6
- Step 4b: Compute the "outside contraction point" and determine whether to use it
 - Compute the "outside contraction point" (pc): the point psi*rho*||pbar pworst|| away from pbar in the *opposite* direction of pworst
 - Replace the worst point with the better of the "outside contraction point" and the "reflection point"; move on to Step 6
- Step 4c: Compute the "inside contraction point" and determine whether to use it
 - Compute the "inside contraction point" (pcc): the point psi*||pbar pworst|| away from pbar in the SAME direction as pworst
 - If it's better than the worst point, replace the worst point with the "inside contraction point"
 - Otherwise, no direction of replacement is better, move on to Step 5
- Step 5: Perform a "shrink"
 - Replace all points p other than the best point with the point sigma*||p pbest|| away from pbest in the direction of p
- Step 6: Analyze error improvement
 - Sort vertices in ascending total error value so that the first vertex has the lowest total error
 - Compute maximum error change, maximum parameter change and respective tolerances
- Step7: Iterate steps 3~6 until **one of** the following occurs:
 - **Both** of these are true:
 - The maximum coordinate difference between the current best point and the next best **ncp** (min(2, n)) other points in the simplex

20170123

is less than or equal to simplexout.tolx. Specifically, until

$$\max_{i} \left(\frac{|p_i - p_1|}{|p_1|} \right) \le \text{TolX}$$

where p_1 is the iteration of the parameter corresponding to the best vertex, and p_i is any other iteration of the parameter

for all parameters p,

- The corresponding maximum improvement in errors is less than or equal to simplexout.tolf * error of best vertex
- The maximum number of iterations is exceeded
- The maximum number of function evaluations is exceeded
- Step 8: Transform back parameters to original space

$$x = LB + \frac{\sin(p) + 1}{2}(UB - B)$$

- Logged the **optimization path** in a csv file and tried to improve the algorithm
 - Changed the initial parameter values for cm from 0.789 μF/cm² (Christine's initial value) to 0.88 μF/cm² and refitted E091710's passive traces with gpas, epas & Lengths of dendrites changing

1	itercount	how	func_evals	Error	Maximum error change	Error tolerance	Maximum parameter change		L_dend1	L_dend2	gpas	epas
2	0	initial	1	45.67	NaN	0.0001	NaN	0.0001	12.49	84.67	8.21E-06	-80.4
З	1	initial simplex	5	20.66	NaN	0.0001	NaN	0.0001	120	84.67	8.21E-06	-80.4
4	2	reflect: < second worst point	6	20.66	20.35	1.033	3.34	0.3921	120	84.67	8.21E-06	-80.4
5	3	reflect: < second worst point	7	20.66	20.35	1.033	3.34	0.3921	120	84.67	8.21E-06	-80.4
6	4	reflect: < second worst point	8	20.66	18.37	1.033	2.752	0.3921	120	84.67	8.21E-06	-80.4
7	5	reflect: < second worst point	9	20.66	15.08	1.033	2.752	0.3921	120	84.67	8.21E-06	-80.4
8	6	contract inside: < worst point	11	20.66	15.08	1.033	2.752	0.3921	120	84.67	8.21E-06	-80.4
9	7	reflect: < best point	13	16.74	18.22	0.837	2.948	0.4754	57.76	30.54	6.49E-05	-120
10	8	reflect: < second worst point	14	16.74	14.89	0.837	2.948	0.4754	57.76	30.54	6.49E-05	-120
11	9	reflect: < second worst point	15	16.74	3.925	0.837	2.948	0.4754	57.76	30.54	6.49E-05	-120
12	10	contract outside: < worst point	17	14.34	5.687	0.7171	1.86	0.4977	33.51	25.78	7.61E-05	-118.6
13	11	reflect: < best point	19	13.34	3.399	0.667	2.581	0.4835	48.53	5.422	7.04E-05	-37.04
14	12	shrink	25	13.34	12.42	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
15	13	reflect: < second worst point	26	13.34	12.42	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
16	14	contract outside: < worst point	28	13.34	12.42	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
17	15	reflect: < second worst point	29	13.34	7.49	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
18	16	contract inside: < worst point	31	13.34	7.438	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
19	17	reflect: < second worst point	32	13.34	5.402	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
20	18	contract inside: < worst point	34	9.785	3.555	0.4893	0.8037	0.4776	55.19	5.437	4.57E-05	-66.05
21	19	reflect: < second worst point	35	9.785	3.555	0.4893	0.8037	0.4776	55.19	5.437	4.57E-05	-66.05
22	20	reflect: < second worst point	36	9.785	3.555	0.4893	0.8037	0.4776	55.19	5.437	4.57E-05	-66.05
23	21	reflect: < second worst point	37	9.785	3.555	0.4893	0.8037	0.4776	55.19	5.437	4.57E-05	-66.05
24	22	contract inside: < worst point	39	9.156	4.181	0.4578	0.5901	0.4755	57.55	13.08	3.33E-05	-56.11
25	23	contract inside: < worst point	41	9.156	2.944	0.4578	0.4134	0.4755	57.55	13.08	3.33E-05	-56.11
26	24	reflect: < second worst point	42	9.156	0.8383	0.4578	0.9844	0.4755	57.55	13.08	3.33E-05	-56.11
27	25	contract inside: < worst point	44	9.156	0.8383	0.4578	0.9844	0.4755	57.55	13.08	3.33E-05	-56.11
28	26	reflect: < second worst point	45	9.156	0.629	0.4578	0.8282	0.4755	57.55	13.08	3.33E-05	-56.11
29	27	contract inside: < worst point	47	9.156	0.629	0.4578	0.8282	0.4755	57.55	13.08	3.33E-05	-56.11
30	28	contract inside: < worst point	49	9.156	0.509	0.4578	0.8282	0.4755	57.55	13.08	3.33E-05	-56.11
31	29	reflect: < second worst point	50	9.156	0.1826	0.4578	0.6848	0.4755	57.55	13.08	3.33E-05	-56.11
32	30	contract inside: < worst point	52	9.134	0.1427	0.4567	0.3548	0.479	53.59	7.175	4.01E-05	-71.48

7	5	reflect: < second worst point	9	20.66	20.35	1.033	3.34	0.3921	120	84.67	8.21E-06	-80.4
8	6	contract inside: < worst point	11	20.66	18.37	1.033	2.752	0.3921	120	84.67	8.21E-06	-80.4
9	7	reflect: < best point	13	16.74	22.05	0.837	2.948	0.4754	57.76	30.54	6.49E-05	-120
10	8	reflect: < second worst point	14	16.74	19.01	0.837	2.948	0.4754	57.76	30.54	6.49E-05	-120
11	9	reflect: < second worst point	15	16.74	18.22	0.837	2.948	0.4754	57.76	30.54	6.49E-05	-120
12	10	contract outside: < worst point	17	14.34	17.28	0.7171	2.11	0.4977	33.51	25.78	7.61E-05	-118.6
13	11	reflect: < best point	19	13.34	7.324	0.667	2.581	0.4835	48.53	5.422	7.04E-05	-37.04
14	12	shrink	25	13.34	731.8	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
15	13	reflect: < second worst point	26	13.34	341.5	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
16	14	contract outside: < worst point	28	13.34	16.47	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
17	15	reflect: < second worst point	29	13.34	16.09	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
18	16	contract inside: < worst point	31	13.34	12.42	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
19	17	reflect: < second worst point	32	13.34	7.49	0.6668	1.161	0.4906	40.8	12.03	7.33E-05	-82.03
20	18	contract inside: < worst point	34	9.785	10.99	0.4893	0.8037	0.4776	55.19	5.437	4.57E-05	-66.05
21	19	reflect: < second worst point	35	9.785	8.954	0.4893	1.014	0.4776	55.19	5.437	4.57E-05	-66.05
22	20	reflect: < second worst point	36	9.785	8.069	0.4893	1.014	0.4776	55.19	5.437	4.57E-05	-66.05
23	21	reflect: < second worst point	37	9.785	6.319	0.4893	0.9307	0.4776	55.19	5.437	4.57E-05	-66.05
24	22	contract inside: < worst point	39	9.156	4.284	0.4578	0.7709	0.4755	57.55	13.08	3.33E-05	-56.11
25	23	contract inside: < worst point	41	9.156	4.184	0.4578	0.5901	0.4755	57.55	13.08	3.33E-05	-56.11
26	24	reflect: < second worst point	42	9.156	4.181	0.4578	0.9844	0.4755	57.55	13.08	3.33E-05	-56.11
27	25	contract inside: < worst point	44	9.156	2.944	0.4578	0.9844	0.4755	57.55	13.08	3.33E-05	-56.11
28	26	reflect: < second worst point	45	9.156	2.183	0.4578	0.9844	0.4755	57.55	13.08	3.33E-05	-56.11
29	27	contract inside: < worst point	47	9.156	0.8383	0.4578	0.9844	0.4755	57.55	13.08	3.33E-05	-56.11
30	28	contract inside: < worst point	49	9.156	0.7013	0.4578	0.8282	0.4755	57.55	13.08	3.33E-05	-56.11
31	29	reflect: < second worst point	50	9.156	0.629	0.4578	0.8282	0.4755	57.55	13.08	3.33E-05	-56.11
32	30	contract inside: < worst point	52	9.134	0.5313	0.4567	0.4734	0.479	53.59	7.175	4.01E-05	-71.48
33	31	contract inside: < worst point	54	9.045	0.2934	0.4523	0.5932	0.4844	47.58	8.736	3.76E-05	-82.17
34	32	contract inside: < worst point	56	9.038	0.2387	0.4519	0.4008	0.4793	53.26	8.805	3.43E-05	-73.54

• Changed the number of points to compare the best point against (**ncp**) from 2 to the **number of parameters** (i.e., all the rest of the points in the simplex)

• Changed the **definition for parameter change** so that the largest parameter doesn't dominate (by normalizing each parameter)

					-							
17	15	reflect: < second worst point	29	13.34	16.09	0.6668	0.1895	0.05	40.8	12.03	7.33E-05	-82.03
18	16	contract inside: < worst point	31	13.34	12.42	0.6668	0.1895	0.05	40.8	12.03	7.33E-05	-82.03
19	17	reflect: < second worst point	32	13.34	7.49	0.6668	0.1895	0.05	40.8	12.03	7.33E-05	-82.03
20	18	contract inside: < worst point	34	9.785	10.99	0.4893	0.124	0.05	55.19	5.437	4.57E-05	-66.05
21	19	reflect: < second worst point	35	9.785	8.954	0.4893	0.124	0.05	55.19	5.437	4.57E-05	-66.05
22	20	reflect: < second worst point	36	9.785	8.069	0.4893	0.124	0.05	55.19	5.437	4.57E-05	-66.05
23	21	reflect: < second worst point	37	9.785	6.319	0.4893	0.1925	0.05	55.19	5.437	4.57E-05	-66.05
24	22	contract inside: < worst point	39	9.156	4.284	0.4578	0.09855	0.05	57.55	13.08	3.33E-05	-56.11
25	23	contract inside: < worst point	41	9.156	4.184	0.4578	0.08786	0.05	57.55	13.08	3.33E-05	-56.11
26	24	reflect: < second worst point	42	9.156	4.181	0.4578	0.1466	0.05	57.55	13.08	3.33E-05	-56.11
27	25	contract inside: < worst point	44	9.156	2.944	0.4578	0.1466	0.05	57.55	13.08	3.33E-05	-56.11
28	26	reflect: < second worst point	45	9.156	2.183	0.4578	0.1466	0.05	57.55	13.08	3.33E-05	-56.11
29	27	contract inside: < worst point	47	9.156	0.8383	0.4578	0.1466	0.05	57.55	13.08	3.33E-05	-56.11
30	28	contract inside: < worst point	49	9.156	0.7013	0.4578	0.1233	0.05	57.55	13.08	3.33E-05	-56.11
31	29	reflect: < second worst point	50	9.156	0.629	0.4578	0.1233	0.05	57.55	13.08	3.33E-05	-56.11
32	30	contract inside: < worst point	52	9.134	0.5313	0.4567	0.07441	0.05	53.59	7.175	4.01E-05	-71.48
33	31	contract inside: < worst point	54	9.045	0.2934	0.4523	0.09689	0.05	47.58	8.736	3.76E-05	-82.17
34	32	contract inside: < worst point	56	9.038	0.2387	0.4519	0.06347	0.05	53.26	8.805	3.43E-05	-73.54
35	33	reflect: < second worst point	57	9.038	0.1184	0.4519	0.06511	0.05	53.26	8.805	3.43E-05	-73.54
36	34	contract inside: < worst point	59	9.003	0.131	0.4501	0.06504	0.05	53.97	9.939	3.55E-05	-63.18
37	35	contract inside: < worst point	61	8.992	0.1373	0.4496	0.05186	0.05	52.05	7.65	3.83E-05	-69.97
38	36	contract outside: < worst point	63	8.992	0.05357	0.4496	0.04252	0.05	52.05	7.65	3.83E-05	-69.97

31	29	reflect: < second worst point	50	9.156	0.629	0.09156	0.1233	0.01	57.55	13.08	3.33E-05	-56.11
32	30	contract inside: < worst point	52	9.134	0.5313	0.09134	0.07441	0.01	53.59	7.175	4.01E-05	-71.48
33	31	contract inside: < worst point	54	9.045	0.2934	0.09045	0.09689	0.01	47.58	8.736	3.76E-05	-82.17
34	32	contract inside: < worst point	56	9.038	0.2387	0.09038	0.06347	0.01	53.26	8.805	3.43E-05	-73.54
35	33	reflect: < second worst point	57	9.038	0.1184	0.09038	0.06511	0.01	53.26	8.805	3.43E-05	-73.54
36	34	contract inside: < worst point	59	9.003	0.131	0.09003	0.06504	0.01	53.97	9.939	3.55E-05	-63.18
37	35	contract inside: < worst point	61	8.992	0.1373	0.08992	0.05186	0.01	52.05	7.65	3.83E-05	-69.97
38	36	contract outside: < worst point	63	8.992	0.05357	0.08992	0.04252	0.01	52.05	7.65	3.83E-05	-69.97
39	37	contract inside: < worst point	65	8.985	0.05324	0.08985	0.04979	0.01	50.43	8.963	3.67E-05	-77.01
40	38	contract inside: < worst point	67	8.985	0.02712	0.08985	0.04979	0.01	50.43	8.963	3.67E-05	-77.01
41	39	reflect: < second worst point	68	8.985	0.01832	0.08985	0.05773	0.01	50.43	8.963	3.67E-05	-77.01
42	40	contract inside: < worst point	70	8.985	0.01179	0.08985	0.05773	0.01	50.43	8.963	3.67E-05	-77.01
43	41	contract inside: < worst point	72	8.98	0.01612	0.0898	0.03505	0.01	52.21	8.598	3.63E-05	-70.87
44	42	contract outside: < worst point	74	8.98	0.01213	0.0898	0.02145	0.01	52.21	8.598	3.63E-05	-70.87
45	43	contract inside: < worst point	76	8.974	0.01439	0.08974	0.01985	0.01	52	8.268	3.74E-05	-71.33
46	44	reflect: < second worst point	77	8.974	0.01157	0.08974	0.01985	0.01	52	8.268	3.74E-05	-71.33
47	45	contract inside: < worst point	79	8.974	0.01067	0.08974	0.01985	0.01	52	8.268	3.74E-05	-71.33
48	46	reflect: < second worst point	80	8.974	0.01035	0.08974	0.03283	0.01	52	8.268	3.74E-05	-71.33
49	47	reflect: < second worst point	81	8.974	0.006988	0.08974	0.03283	0.01	52	8.268	3.74E-05	-71.33
50	48	contract inside: < worst point	83	8.974	0.006914	0.08974	0.03283	0.01	52	8.268	3.74E-05	- <mark>71.3</mark> 3
51	49	contract inside: < worst point	85	8.974	0.005825	0.08974	0.02063	0.01	52	8.268	3.74E-05	- <mark>71.3</mark> 3
52	50	shrink	91	8.971	0.01415	0.08971	0.00949	0.01	52.1	8.431	3.68E-05	-71.1

• Lowered tolx_rel & tolf_rel from 0.05 to 0.01

Condition	Previous	Changed cm	Changed ncp	Modified parameter change	Lowered tolx & tolf to 0.01
Total error	~8	9.134	9.038	8.992	8.971
L_dend1	57.7	53.59	53.26	52.05	52.1
L_dend2	11.1	7.715	8.805	7.65	8.431
gpas	3.01e-5	4.01e-5	3.43e-5	3.83e-5	3.68e-5
epas	-54.9	-71.48	-73.54	-69.97	-71.1

• Modified fminsearch3_4compgabab.m:

- 2017-01-21 Cleaned up code
- 2017-01-21 Changed the number of parameters to compare against to n (from min(2, n))
- 2017-01-21 Changed definition of **maxparamchange** & **tolx** so that the largest parameter doesn't dominate
- 2017-01-21 Replace by the "reflection point" as long as it is better than the worst point
- 2017-01-21 Decrease tolf_rel && tolx_rel from 0.05 to 0.01
- Created log_errors_params.m
 - 2017-01-17 Created

Plan for next week

- Patching:
 - Add a **positive/negative pressure system**. Use the manometer to check performance
 - Add an **audio monitor**
 - Prepare a **battery charger** for the 12-volt Pb battery
 - Ascertain whether the center is also off using the **image under AxoCam**
 - Find an **excitatory cell marker** for LGN recordings
 - (Wed or the following week) Practice patching LGN neurons from 2-month old mice provided by Geoff
- Passive fitting with simulations:
 - Create a concise log file; add timestamp to log file name
 - Figure out what **bounds** would be physiological and impose any necessary restrictions on the relative lengths and diameters of each segment
 - Use results from the curve-fitting method as the starting points for the biophysical model. What is the equivalent length & diameter of the cylinder given the diameter of the sphere? How to decide how to convert a single length + diameter pair for the dendrite into two or three pairs?
 - **Bootstrap** the optimization procedure for the current pulse response fit by varying the **initial values** for the parameters
 - Further improve the optimization algorithm
 - i. Apply stochasticity in each step? (Perhaps not a good idea for reproducibility)
 - ii. Systematically sample across entire space initially? (to avoid converging on local minimums)
 - iii. Cross-entropy optimization algorithm
 - iv. Implement the control variable u(t) in the error function
 - **Compare** the fitted passive parameters across cells
 - Await response from John on questions about the **passive fitting**
- Data analysis:
 - Decide what to do with
 - CONTESTED_TAKE_OUT_More_than_one_LTS_no_spont
 - Ask everyone to score Word files
 - Fix **find_LTS.m** to enforce overrules.
 - Rerun dclampDataExtractor.m with all the overrules enforced (dclampDataExtractor14.slurm, giving the version old15)
- Brian's tasks:
 - Write Microsoft Visual Basic code for analyzing scored Word files (already done)

- Analyze scoring results (after everyone finishes scoring)
- **Fit Gaussians** to find a threshold in the RMSE histograms from the curve fitting method
- Figure out whether the traces with **high RMSE** in the rising phase are the same traces with high RMSE in the falling phase
- Devise a good threshold for "noisy recordings"
- Take out any trace with error greater than the threshold from the trace averaging. Compute the **mean recorded voltage change** ($\Delta \bar{V}_{rec}$), the **mean current pulse amplitude** (**cpa_mean**), the **mean pulse width** (**pw_mean**) by averaging over all traces remaining.
- Fix plot_traces_abf.m:
 - i. Suppress aberrant output
 - Automatically detect whether a voltage or current is recorded (based on the maximum absolute values and label the axes appropriately (esp. Voltage clamp recordings, see 'A20161216_0008.abf' for example)
- SWD detection w/ Vignesh & Mark:
 - Figure out how to **screen** through detection results
- Computational Neuroscience:
 - Computational Neuroscience (University of Washington Coursera): Week 6 Quiz
 - Computational Neuroscience (University of Washington Coursera): Week 7
- Patch Clamp Electrophysiology:
 - 6.002.1x Circuits and Electronics (MITx): Week 2
- Neuroscience in General:
 - NESC 7030 Molecular, Cellular, and Developmental Neuroscience: Week 3
- Research in General:
 - Molecular Foundations of Medicine (Stanford EdX): Molecular Techniques
 - Mathematical Biostatistics Bootcamp 1 (Johns Hopkins Coursera): Week 3